Sub-Structure and Residual Stress in Rotary Swaged Cu/Al Clad Composite Wires

Article Preview

Abstract:

This study investigated the prospective application of the advantageous intensive plastic deformation method of rotary swaging for production of Al-Cu composite wires. Such materials are perspective to be used within a wide range of commercial and industrial branches, from transportation to electrotechnics. Cu-Al laminated wires with two unique different stacking sequences were rotary swaged down to 5 mm diameter at room temperature to minimize the development of brittle intermetallics at the interfaces. The analyses primarily focused on the mutual comparison of both the stacking sequences (Al sheath reinforced with Cu wires vs. Al sheath and Al core reinforced with Cu inter-layer) from the viewpoints of mechanical properties, sub-structure development, and occurrence of residual stress. While the individual Cu wires exhibited bimodal structure and the presence of residual stress within the growing grains, the Cu inter-layer featured recrystallized grains and homogeneous stress distribution. The mechanical properties for both the composites were enhanced by the swaging technology; the composite reinforced with Cu wires exhibited slightly higher ultimate tensile strength than the one with Cu inter-layer (258 MPa vs. 276 MPa). However, the latter featured significantly higher plasticity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Jia, J. Zhao, L. Luo, H. Xie, Z. Jiang, Experimental and numerical study on micro deep drawing with aluminium-copper composite material, Procedia Eng. 207 (2017) 1051–1056.

DOI: 10.1016/j.proeng.2017.10.1129

Google Scholar

[2] D.W. Wolla, M.J. Davidson, A.K. Khanra, Studies on the formability of powder metallurgical aluminum–copper composite, Mater. Des. 59 (2014) 151–159.

DOI: 10.1016/j.matdes.2014.02.049

Google Scholar

[3] L. Kunčická, R. Kocich, K. Dvořák, A. Macháčková, Rotary swaged laminated Cu-Al composites, Effect of structure on residualstress and mechanical and electric properties, Mater. Sci. Eng. A. 742 (2019) 743–750.

DOI: 10.1016/j.msea.2018.11.026

Google Scholar

[4] S. Madhusudan, M.M. Sarcar, N.B.R.M. Rao, Mechanical properties of Aluminum-Copper(p) composite metallic materials, J. Appl. Res. Technol. 14 (2016) 293–299.

DOI: 10.1016/j.jart.2016.05.009

Google Scholar

[5] A.N. Cherepanov, V.I. Mali, I.N. Maliutina, A.M. Orishich, A.G. Malikov, V.O. Drozdov, Laser welding of stainless steel to titanium using explosively welded composite inserts, Int. J. Adv. Manuf. Technol. 90 (2017) 3037–3043.

DOI: 10.1007/s00170-016-9657-2

Google Scholar

[6] A.O. Al-Roubaiy, S.M. Nabat, A.D.L. Batako, Experimental and theoretical analysis of friction stir welding of Al–Cu joints, Int. J. Adv. Manuf. Technol. 71 (2014) 1631–1642.

DOI: 10.1007/s00170-013-5563-z

Google Scholar

[7] R. Kocich, A. Macháčková, L. Kunčická, F. Fojtík, Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites, Mater. Des. 71 (2015) 36–47.

DOI: 10.1016/j.matdes.2015.01.008

Google Scholar

[8] M. Aravind, P. Yu, M.Y. Yau, D.H.L. Ng, Formation of Al2Cu and AlCu intermetallics in Al(Cu) alloy matrix composites by reaction sintering, Mater. Sci. Eng. A. 380 (2004) 384–393.

DOI: 10.1016/j.msea.2004.04.013

Google Scholar

[9] L. Kunčická, T.C. Lowe, C.F. Davis, R. Kocich, M. Pohludka, Synthesis of an Al/Al2O3composite by severe plastic deformation, Mater. Sci. Eng. A. 646 (2015) 234–241.

DOI: 10.1016/j.msea.2015.08.075

Google Scholar

[10] R. Kocich, M. Greger, A. Macháčková, Finite element investigation of influence of selected factors on ECAP process, in: Metal 2010, 19th International Metallurgical and Materials Conference, Tanger Ltd., 2010. p.166–171.

Google Scholar

[11] P. Lukac, R. Kocich, M. Greger, O. Padalka, Z. Szaraz, Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP, Kov. Mater. 45 (2007) 115–120.

Google Scholar

[12] W. Chen, P. Feng, L. Dong, B. Liu, S. Ren, Y. Fu, Experimental and theoretical analysis of microstructural evolution and deformation behaviors of CuW composites during equal channel angular pressing, Mater. Des. 142 (2018) 166–176.

DOI: 10.1016/j.matdes.2018.01.032

Google Scholar

[13] R. Kocich, L. Kunčická, P. Král, A. Macháčková, Sub-structure and mechanical properties of twist channel angular pressed aluminium, Mater. Charact. 119 (2016) 75–83.

DOI: 10.1016/j.matchar.2016.07.020

Google Scholar

[14] R. Kocich, L. Kunčická, A. Macháčková, Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD, IOP Conf. Ser. Mater. Sci. Eng. 63 (2014) 012006.

DOI: 10.1088/1757-899x/63/1/012006

Google Scholar

[15] M. Asgari, F. Fereshteh-Saniee, S.M. Pezeshki, M. Barati, Non-equal channel angular pressing (NECAP) of AZ80 Magnesium alloy: Effects of process parameters on strain homogeneity, grain refinement and mechanical properties, Mater. Sci. Eng. A. 678 (2016) 320–328.

DOI: 10.1016/j.msea.2016.09.102

Google Scholar

[16] L. Kunčická, R. Kocich, J. Drápala, V.A. Andreyachshenko, FEM simulations and comparison of the ECAP and ECAP-PBP influence on Ti6Al4V alloy's deformation behaviour, in: Metal 2013, 22nd International Metallurgical and Materials Conference, Tanger Ltd., 2023. p.391–396.

DOI: 10.1016/j.micron.2012.06.011

Google Scholar

[17] R. Kocich, A. Macháčková, F. Fojtík, Comparison of strain and stress conditions in conventional and ARB rolling processes, Int. J. Mech. Sci. 64 (2012) 54–61.

DOI: 10.1016/j.ijmecsci.2012.08.003

Google Scholar

[18] R. Kocich, L. Kunčická, A. Macháčková, M. Šofer, Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites, Mater. Des. 123 (2017) 137–146.

DOI: 10.1016/j.matdes.2017.03.048

Google Scholar

[19] Oxford Instruments, Providing leading-edge tools for SEM, TEM &FIB - Nanoanalysis -, (2018). https://nano.oxinst.com/ (accessed December 24, 2018).

Google Scholar

[20] B. Beausir, J.J. Fundenberger, Analysis Tools for Electron and X-ray diffraction, ATEX - software, www.atex-software.eu, (2017).

Google Scholar

[21] B. Verlinden, J. Driver, I. Samajdar, R.D. Doherty, Thermo-mechanical processing of metallic materials, Elsevier, Amsterdam, (2007).

Google Scholar

[22] Y. Yang, J. Nie, Q. Mao, Y. Zhao, Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation, Results Phys. 13 (2019) 102236.

DOI: 10.1016/j.rinp.2019.102236

Google Scholar

[23] F.J. Humphreys, M. Hetherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd, Oxford, (2004).

Google Scholar

[24] C.P. Ostertag, E. Drescher‐Krasicka, Novel residual stress measurement techniques to measure residual stresses in fiber reinforced composites, J. Mater. Sci. 34 (1999) 557–563.

Google Scholar

[25] R. Kocich, L. Kunčická, P. Král, P. Strunz, Characterization of innovative rotary swaged Cu-Al clad composite wire conductors, Mater. Des. 160 (2018) 828–835.

DOI: 10.1016/j.matdes.2018.10.027

Google Scholar

[26] L. Kunčická, R. Kocich, P. Strunz, A. Macháčková, Texture and residual stress within rotary swaged Cu/Al clad composites, Mater. Lett. 230 (2018) 88–91.

DOI: 10.1016/j.matlet.2018.07.085

Google Scholar

[27] R. Kocich, L. Kunčická, P. Král, A. Macháčková, Sub-structure and mechanical properties of twist channel angular pressed aluminium, Mater. Charact. 119 (2016) 75-83.

DOI: 10.1016/j.matchar.2016.07.020

Google Scholar

[28] Z. Chen, Q. Zhang, Z. Jiang, H. Jiang, X. Wu, A Macroscopic Model for the Portevin-Le Chatelier Effect, J. Mater. Sci. Technol. 20 (2004) 535–539.

Google Scholar

[29] R. Kocich, L. Kunčická, D. Dohnalík, A. Macháčková, M. Šofer, Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations, Int. J. Refract. Met. Hard Mater. 61 (2016) 264–272.

DOI: 10.1016/j.ijrmhm.2016.10.005

Google Scholar

[30] A. Russell, K.L. Lee, Structure-Property Relations in Nonferrous Metals, 1st ed., John Wiley & Sons, Inc., New Jersey, (2005).

Google Scholar