Improving of Electric Voltage Response Based on Improving of Electrical Properties for Multiferroic Material of BiFeO3-BaTiO3 System

Article Preview

Abstract:

Synthesis of nanomultiferroic material with the active content of bismuth ferrite (BiFeO3) and barium titanate (BaTiO3) was carried out. It is considering that it was difficult to obtain single phase of BiFeO3 as a base material for multiferroic materials. It is expected that the addition of BaTiO3 on ceramic alloys consist of BiFeO3 and BaTiO3 can improve the electrical properties of the ceramics and finally it improves the multiferroic properties of the material. Multiferroic properties could be seen from the appearance of an electric voltage response if the material is given the effect of an external magnetic field. The synthesis uses the sol gel method which is a good method of producing nanosized material. Synthesis of nanomultiferroic ceramic materials is carried out by varying the weight ratio of BaTiO3 and BiFeO3 of 2: 1, calcination temperature of 350°C for 4 hours and sintering temperatures with variations of 700°C; 750°C and 800°C for 2; 4; and 6 hours. Characterization was carried out using X Ray Diffraction (XRD) to confirm phase formation. The electrical properties test which produces a hysterical loop is carried out to determine the value of remanent, coercivity and electric polarization saturation. Particle size measurements were carried out using the Beckman Coulter DelsaTM nanoinstrument. The multiferroic phenomena is known from the appearance of an electric voltage response if there is an effect of an external magnetic field on the material. The smallest particle size was obtained on ceramic powder which experienced sintered of 750°C. The best values of remanent, coercivity and electric polarization​​ were obtained on ceramics which were sintered at temperatures of 750°C for 6 hours. This is linear with the highest value of electrical voltage arising as a result of the effect of the external magnetic field given to the ceramic material. Material that has a large electrical voltage response shows good multiferroic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-61

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

Google Scholar

[2] X.D. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).

DOI: 10.1063/1.1862336

Google Scholar

[3] Q.Pan, B.Chu, Enhanced magnetoelectric response in bismuth-deficient BiFeO3-BaTiO3 ceramics, Journal of Applied Physics, 125, 154102 (2019).

DOI: 10.1063/1.5086343

Google Scholar

[4] H.B. Yang, Q.Q. Ke, H.Y. Si, and J.S. Chen, J. Appl. Phys. 111, 024104 (2012).

Google Scholar

[5] S. Unruan, S. Srilomsak, S. Priya, P. Jantaratana, S. Rujirawat, and R. Yimnirun, Ceram. Int. 41, 4087 (2015).

DOI: 10.1016/j.ceramint.2014.11.103

Google Scholar

[6] X.C. Wu, M.J. Tian, Y.Q. Guo, Q.J. Zheng, L.L. Luo, and D.M. Lin, J. Mater. Sci. Mater. Electron. 26, 978 (2015).

Google Scholar

[7] R. Gupta, J. Shah, S. Chaudhary, S. Singh, and R. K. Kotnala, J. Nanopart. Res.15, 2004 (2013).

Google Scholar

[8] S. C. Yang, A. Kumar, V. Petkov, and S. Priya, J. Appl. Phys. 113, 144101 (2013).

Google Scholar

[9] S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

Google Scholar

[10] K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).

Google Scholar

[11] M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005).

Google Scholar

[12] Y. Tokura and S. Seki, Adv. Mater. 22, 1554 (2010).

Google Scholar

[13] C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Adv. Mater. 22, 2900 (2010).

Google Scholar

[14] Selbach, S. M., Einarsrud, M. & Grande, T. On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009).

Google Scholar

[15] Valant, M., Axelsson, A. & Alford, N. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19, 5431–5436 (2007).

DOI: 10.1021/cm071730+

Google Scholar

[16] Leontsev, S. O. & Eitel, R. E. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957–2961 (2009).

DOI: 10.1111/j.1551-2916.2009.03313.x

Google Scholar

[17] Guo, Y. et al. Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 3, 5811–5824 (2015).

DOI: 10.1039/c5tc00507h

Google Scholar

[18] Joo, H. W., Kim, D. S., Kim, J. S. & Cheon, C. I. Piezoelectric properties of Mn-doped 0.75BiFeO3−0.25BaTiO3 ceramics. Ceram. Int. 42, 10399–10404 (2016).

DOI: 10.1016/j.ceramint.2016.03.179

Google Scholar

[19] A. Kumar, S. Saha, H. Basumatary, R. Ranjan, Ferromagnetism in the multiferroic alloy systems BiFeO3-BaTiO3 and BiFeO3-SrTiO3: Intrinsic or extrinsic?, Appl. Phys. Lett. 114, 022902 (2019).

DOI: 10.1063/1.5059550

Google Scholar

[20] G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

Google Scholar

[21] R. Mazumder, P. S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, and M. Raja, Appl. Phys. Lett. 91, 062510 (2007).

DOI: 10.1063/1.2768201

Google Scholar

[22] T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano. Lett. 7, 766 (2007).

Google Scholar

[23] T. J. Park, G. C. Papaefthymiou, A. J. Viesca, Y. Lee, H. Zhou, and S. S. Wong, Phys. Rev. B 82, 024431 (2010).

Google Scholar

[24] A. Singh, V. Pandey, R. K. Kotnala, and D. Pandey, Phys. Rev. Lett. 101, 247602 (2008).

Google Scholar

[25] S. Vura, P. S. Anil Kumar, A. Senyshyn, and R. Ranjan, J. Magn. Magn. Mater. 365, 76 (2014).

Google Scholar

[26] Z. Z. Ma, Z. M. Tian, J. Q. Li, C. H. Wang, S. X. Huo, H. N. Duan, and S. L. Yuan, Solid State Sci. 13, 1296 (2011).

Google Scholar

[27] K. Singh, N. S. Negi, R. K. Kotnala, and M. Singh, Solid State Commun. 148, 18 (2008).

Google Scholar

[28] B. Xu, D. Wang, J. _I~niguez, and L. Bellaiche, Adv. Funct. Mater. 25, 552 (2015).

Google Scholar

[29] H. Zheng, J.Wang, S. E. Lofland, Z. Ma, L. M. Ardabili, T. Zhao, L. S. Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M.Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).

DOI: 10.1126/science.1094207

Google Scholar

[30] D. Suastiyanti, Ismojo, Phase-Pure of BiFeO3 Ceramic Based on Citric Acid –Assisted Gel by Sintering Time Variation, IOP Conf. Series: Materials Science and Engineering 214 (2017).

DOI: 10.1088/1757-899x/214/1/012027

Google Scholar

[31] D. Suastiyanti, S. Yatmani, M. Wijaya, Magnetic properties of nanomagnetic material based on BaTiO3 and BiFeO3 with variation of temperatures and timesof sintering, IOP Conf. Series: Journal of Physics: Conf. Series 1153 (2019).

DOI: 10.1088/1742-6596/1153/1/012052

Google Scholar

[32] D. Suastiyanti, M.T.E. Manawan, M. Wijaya, Electric polarization properties of BaTiO3- BiFeO3 as nanomultiferroic material produced by sol-gel method, MATEC Web of Conferences 204, 05005 (2018).

DOI: 10.1051/matecconf/201820405005

Google Scholar