Natural Fiber Reinforced Composites as Bulletproof Panel Materials

Article Preview

Abstract:

The panel attached in bulletproof vests must fulfill the standard of NIJ 0101.06. It must resist the penetration of the bullet and has a back-face signature that does not exceed 44 mm by ballistic testing. This research included both numerical simulation and ballistic tests for validation using type IV ballistic bullet. This research involved composite epoxy-HGM-hemp (Boehmeria Nivea) and epoxy-HGM-sisal (Agave Sisalana) as bulletproof panel materials with their woven-thickness characteristic. The properties of materials are obtained by performing ASTM D3039 test. As a result, by varying the thickness or each amount of layer, the thinnest panel of each material that fulfills the standard of NIJ 0101.06 is obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-90

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] US Department of Justice, Ballistic Resistance of Body Armor, vol. 9, no. 1. 2008, p.1–89.

Google Scholar

[2] K. Diharjo, Pengaruh Perlakuan Alkali terhadap Sifat Tarik Bahan Komposit Serat Rami-Polyester,, J. Tek. Mesin, vol. 8, no. 1, p.8–13, (2006).

DOI: 10.23917/mesin.v11i1.3196

Google Scholar

[3] A. Budianto and H. S. BR, Studi Karakteristik Komposit Kulit Kras Dan Rami Dengan Matrik Resin Epoksi Sebagai Bahan Tahan Impak,, in Prosiding Seminar Nasional Kulit, Karet dan Plastik, 2014, vol. 3, no. 1.

DOI: 10.20543/mkkp.v2i5.278

Google Scholar

[4] A. Kusumastuti, Aplikasi serat sisal sebagai komposit polimer,, J. Kompetensi Tek., vol. 1, no. 1, (2009).

Google Scholar

[5] M.K. Gupta and R.K. Srivastava, Properties of sisal fibre reinforced epoxy composite,, (2016).

Google Scholar

[6] M. Najib, Optimasi Kekuatan Tarik Komposit Serat Rami Polyester., Universitas Sebelas Maret, (2010).

Google Scholar

[7] Sutikno, W. Ashari, and R. Azhari, Ballistic performance test of multiple reinforcements composite armor vest,, AIP Conf. Proc., vol. 1983, no. 1, p.50010, Jul. (2018).

DOI: 10.1063/1.5046283

Google Scholar

[8] W. Berata, Sutikno, A. Safa'at, and J. A. Nugroho, Multiple reinforcements composite as a lightweight helmet material in order to absorb impact energy due to collision,, in AIP Conference Proceedings, 2018, vol. 1983, no. 1, p.50011.

DOI: 10.1063/1.5046284

Google Scholar

[9] T. Properties and P. Storage, 3M TM iM30K Hi-Strength Glass Bubbles.,.

Google Scholar

[10] H. Amalia, I. Sidharta, W. Wijanarko, and P. Suwarta, The Effect of Hollow Glass Reinforced Epoxy in Absorbing Impact Energy for Vehicle Bumper Application,, in Applied Mechanics and Materials, 2015, vol. 758, p.101–106.

DOI: 10.4028/www.scientific.net/amm.758.101

Google Scholar

[11] Z. Lutfianisa, Q., 2015, 'Analisa Kemampuan Rompi Anti Peluru yang Terbuat dari Komposit HGM 16% dalam Menyerap Energi Akibat Impact Proyektil,', Inst. Teknol. Nopember, Surabaya.

Google Scholar

[12] A.P.P. Bittencourt, Estudo comparativo de processos de obtenção de compósitos fibra de vidro/poliéster,, (2015).

Google Scholar

[13] ASTM D3039 / D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2017, www.astm.org.

Google Scholar

[14] ASTM D792-13, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

Google Scholar

[15] ASTM D2734-16, Standard Test Methods for Void Content of Reinforced Plastics, ASTM International, West Conshohocken, PA, 2016, www.astm.org.

Google Scholar