Metal-Containing Monomers Based on Copper and Zinc Salts of Unsaturated Acids and Pendent 4-phenyl-2,2′:6′,2′′-terpyridine Ligands: Synthesis, Characterization and Thermal Properties

Article Preview

Abstract:

Metal-containing monomers based on maleates of copper and zinc, cinnamate of copper and acrylate of zinc with 4-phenyl-2,2′:6′,2′′-terpyridine ligand were prepared for the first time and characterized using a number of analytical techniques including infrared spectroscopy, elemental analysis and thermal gravimetric analysis. According to the results of the thermal analysis, the coordination mixed-ligand complexes based on zinc salts are more stable than copper one both in the case of monocarboxylic acids and dicarboxylic acids. The first stage of polymerization according to results of mass spectra of gaseous products is initiated in accordance with the Borodin–Hunsdiecker mechanism: the initial decarboxylation leads to the formation of carboxy biradicals, which, in turn, cause the polymerization and the formation of polymers. In this paper we also describe facile two-step Kröhnke-type synthesis of 4′-phenyl-2,2′:6′,2′′-terpyridine from 2-acetylpyridine and its NMR spectrum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-128

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.J. Meyer, D.P. Jarrison, A.M. Lapides, et al., Coordination Chemistry of Single-Site Catalyst Precursors in Reductively Electropolymerized Vinylbipyridine Films, Inorg. Chem. 52 (2013) 4747-4749.

DOI: 10.1021/ic302472r

Google Scholar

[2] H. Laguitton-Pasquier, A. Martre, A. Deronzier, Photophysical Properties of Soluble Polypyrrole-Polypyridyl-Ruthenium (II) Complexes, J. Phys. Chem. 105 (2001) 4801-4809.

DOI: 10.1021/jp002188e

Google Scholar

[3] A.M.C. Assumpção, H.E. Toma, J.A. Bonacin, et al., Probing Surface-Complex Interactions with the bis(4-thienylterpyridine) iron (II) complex anchored on TiO2 and gold nanoparticles, Can. J. Chem. 92 (2014) 918-924.

DOI: 10.1139/cjc-2014-0025

Google Scholar

[4] S.A. Moya, R. Pastene, H. Le Bozec, et al., Metallic carbonyl complexes containing heterocycles nitrogen ligands, Inorg. Chim. Acta. 312 (2001) 7-14.

DOI: 10.1016/s0020-1693(00)00292-9

Google Scholar

[5] M.J. Clarke, Ruthenium metallopharmaceuticals, Coord. Chem. Rev. 232 (2002) 69-93.

Google Scholar

[6] U.S. Schubert, C. H. Weidl, A. Cattani, et al., Metallo-supramolecular fullerene assemblies and polymers, Polym. Prepr. 41 (2000) 229-230.

Google Scholar

[7] H. Hofmeier, U.S Schubert, Recent developments in the supramolecular chemistry of terpyridine-metal complexes, Chem. Soc. Rev. 33 (2004) 373-399.

DOI: 10.1039/b400653b

Google Scholar

[8] G.I. Dzhardimalieva, I.E. Uflyand, Recent advances in the chemistry of metal chelate monomers, J. Coord. Chem. 70 (2017) 1468-1527.

DOI: 10.1080/00958972.2017.1317347

Google Scholar

[9] I.E. Uflyand, G.I. Dzhardimalieva, B.C. Yadav, S. Singh, Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives, Dalton Trans. 49 (2020) 3042-3087.

DOI: 10.1039/c9dt04360h

Google Scholar

[10] N.P. Tzanetos, A.K. Andreopoulou, J.K. Kallitsis, Side-chain terpyridine polymers through atom transfer radical polymerization and their ruthenium complexes, J. Polym. Sci. Part A: Polym. Chem. 43 (2005) 4838-4848.

DOI: 10.1002/pola.20950

Google Scholar

[11] B.G. Lohmeijer, U.S. Schubert, Playing LEGO with macromolecules: Design, synthesis, and self-organization with metal complexes, J. Polym. Sci. Part A: Polym. Chem. 41 (2003) 1413-1427.

DOI: 10.1002/pola.10685

Google Scholar

[12] U.S. Schubert, M. Heller, Metallo-Supramolecular Initiators for the Preparation of Novel Functional Architectures, Chem. Eur. J. 7 (2001) 5252-5259.

DOI: 10.1002/1521-3765(20011217)7:24<5252::aid-chem5252>3.0.co;2-9

Google Scholar

[13] K.T. Potts, D.A. Usifer, A. Guadalupe, H.D. Abruna, 4-Vinyl-, 6-Vinyl-, and 4'-Viny1-2,2':6',2''-terpyridinyl Ligands: Their Synthesis and the Electrochemistry of Their Transition-Metal Coordination Complexes, J. Am. Chem. Soc. 109 (1987) 3961-3967.

DOI: 10.1021/ja00247a021

Google Scholar

[14] I.E. Uflyand, V.A. Zhinzhilo. G.I. Dzhardimalieva, Coordination Polymer Based on Nickel (II) Maleate and 4'‑Phenyl‑2,2':6',2"‑Terpyridine: Synthesis, Crystal Structure and Conjugated Thermolysis, J. Inorg. Organomet. Polym. 30 (2020) 965-975.

DOI: 10.1007/s10904-019-01227-8

Google Scholar

[15] S. Bode, M. Enke, U.S. Schubert, and et.al., Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers, J. Mater. Chem. A, 3 (2015) 22145-22153.

DOI: 10.1039/c5ta05545h

Google Scholar

[16] A.D. Pomogailo, B.S. Savost'yanov, Metal-containing monomers and polymers on their basis, Khimiya, Moscow, (1988).

Google Scholar

[17] H. Yamada, Y. Yamamoto, Ultraviolet excitation of Raman spectra of pyridines adsorbed on oxides, J. Chem. Soc., Faraday Trans. 75 (1979)1215-1221.

DOI: 10.1039/f19797501215

Google Scholar

[18] S. Gorduk, H. Yilmaz, O. Andac, Cu (II) and Cd (II) coordination polymers derived from pyrazine-2,3-dicarboxylato and 1-vinylimidazole ligands: Synthesis, characterization and hydrogen storage capacities, Maced. J. Chem. Chem. Eng. 38 (2019) 19-27.

DOI: 10.20450/mjcce.2019.1711

Google Scholar

[19] H.V. Poel, G.V. Koten, K. Vrieze, Novel bonding modes of α-diimines. Synthesis and characterization of [MCl2L(α-diimine)] and [MCl2(α-diimine)n] (M = Pd, Pt; L = phosphine, arsine; n = 1, 2) containing σ,σ-N,N', σ-N, or σ-N↔σ-N' bonded α-diimines, Inorg. Chem. 19 (1980) 1145-1151.

DOI: 10.1021/ic50207a008

Google Scholar

[20] N.P. Porolo, A.D. Pomogailo, I.E. Uflyand, et.al., Synthesis and reactivity of metal-containing monomers. Synthesis and structure of salts of unsaturated dicarboxylic acids, Russ. Chem. Bull. 46 (1997) 362-370.

DOI: 10.1007/bf02494382

Google Scholar

[21] G.B. Deacon, R.J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev. 33 (1980) 227-250.

DOI: 10.1016/s0010-8545(00)80455-5

Google Scholar

[22] R.K. Baimuratova, G.I. Dzhardimalieva, N.D. Golubeva, N.N. Dremova, A.V. Ivanov, Coordination polymers based on trans, trans-muconic acid: synthesis, structure, adsorption and thermal properties, Pure Appl. Chem. (2019) https://doi.org/10.1515/pac-2019-1108.

DOI: 10.1515/pac-2019-1108

Google Scholar