[1]
M. Matos, A.F. Sousa, A.C. Fonseca, C.S.R. Freire, J.F.J. Coelho, A.J.D. Silvestre, A new generation of furanic copolyesters with enhanced degradability: poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) copolyesters, Macromol. Chem. Phys. 215 (2014) 2175-2184.
DOI: 10.1002/macp.201400175
Google Scholar
[2]
C. Vilela, A.F. Sousa, A.C. Fonseca, A.C. Serra, J.F.J. Coelho, C.S.R. Freire, A.J.D. Silvestre, The quest for sustainable polyesters – insights into the future, Polym.Chem. 5 (2014) 3119-3141.
DOI: 10.1039/c3py01213a
Google Scholar
[3]
F.H. Isikgor, C.R. Becer, Lignocellulosic Biomass: a sustainable platform for production of bio-based chemicals and polymers, Polym. Chem. 6 (2015) 4497-4559.
DOI: 10.1039/c5py00263j
Google Scholar
[4]
D. Juais, A.F. Naves, C. Li, R. Gross, L.H. Catalani, Isosorbide Polyesters from Enzymatic Catalysis, Macromolecules. 43 (2010) 10315-10319.
DOI: 10.1021/ma1013176
Google Scholar
[5]
F. Pion, A.F. Reano, P.-H. Ducrot, F. Allais, Chemo-enzymatic preparation of new bio-based bis- and trisphenols: new versatile building blocks for polymer chemistry, RSC Adv. 3 (2013) 8988.
DOI: 10.1039/c3ra41247d
Google Scholar
[6]
J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates the US Department of Energy's Top 10, revisited, Green Chem. 12 (2010) 539-554.
DOI: 10.1039/b922014c
Google Scholar
[7]
V.A. Klushin, K.I. Galkin, V.P. Kashparova, et al., Technological aspects of fructose conversion to high-purity 5-hydroxymethylfurfural, a versatile platform chemical, Russ. J. Org. Chem. 52 (2016) 767-771.
DOI: 10.1134/s1070428016060014
Google Scholar
[8]
D. Chernysheva, V. Klushin, A. Zubenko, et al., Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts synthesized by pulse alternating current technique, Mend. Commun. 28 (2018) 431-433.
DOI: 10.1016/j.mencom.2018.07.031
Google Scholar
[9]
A. F. Sousa, C. Vilela, A. C. Fonseca, M. Matos, C. S. R. Freire, G.-J. M. Gruter, , J. F. J. Coelho, A. J. D. Silvestre, Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency, Polym. Chem. 6 (2015) 5961–5983.
DOI: 10.1039/c5py00686d
Google Scholar
[10]
A. Gandini, A.J.D. Silvestre, C.P. Neto, A.F. Sousa, M. Gomes, The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources, J. Polym. Sci. Polym. Chem. 47 (2009) 295-298.
DOI: 10.1002/pola.23130
Google Scholar
[11]
T. Werpy, G. Petersen, Top Value Added Chemicals from Biomass. Volume I Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Pacific Northwest National Laboratory, (2004).
DOI: 10.2172/15008859
Google Scholar
[12]
A.F. Sousa, M. Matos, C.S.R. Freire, A.J.D. Silvestre, J.F.J. Coelho, New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: A step forward in the development of biobased polyesters, Polymer. 54 (2013) 513-519.
DOI: 10.1016/j.polymer.2012.11.081
Google Scholar
[13]
C.H.R.M. Wilsens, N.J.M. Wullems, E. Gubbels, Y. Yao, S. Rastogi, B.A.J. Noordover, Synthesis, kinetics, and characterization of bio-based thermosets obtained through polymerization of a 2,5-furandicarboxylic acid-based bis(2-oxazoline) with sebacic acid, Polym. Chem. 6 (2015) 2707-2716.
DOI: 10.1039/c4py01609b
Google Scholar
[14]
J.K. Fink, Reactive Polymers Fundamentals and Applications, William Andrew Publishing, New York, (2013).
Google Scholar
[15]
X. Li, Y. Zhang, The conversion of 5-hydroxymethyl furfural (HMF) to maleic anhydride with vanadium-based heterogeneous catalysts, Green Chemistry. 18 (2016) 643-647.
DOI: 10.1039/c5gc01794g
Google Scholar
[16]
Z. Du, et al., Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen, Green Chemistry. 13 (2011) 554-557.
Google Scholar
[17]
H. Guo, G. Yin, Catalytic aerobic oxidation of renewable furfural with phosphomolybdic acid catalyst: an alternative route to maleic acid, The Journal of Physical Chemistry C. 115 (2011) 17516-17522.
DOI: 10.1021/jp2054712
Google Scholar
[18]
J. Lan, et al., Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts, ACS Catalysis. 5 (2015) 2035-2041.
DOI: 10.1021/cs501776n
Google Scholar
[19]
M. Rezaei, et al., Furfural oxidation to maleic acid with H2O2 by using vanadyl pyrophosphate and zirconium pyrophosphate supported on well-ordered mesoporous KIT-6, Journal of Environmental Chemical Engineering. 7 (2019) 102855.
DOI: 10.1016/j.jece.2018.102855
Google Scholar
[20]
X. Li, et al., Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2, Green Chemistry. 19 (2017) 914-918.
DOI: 10.1039/c6gc03020c
Google Scholar