Triethylene Glycol Dehydration by Thermopervaporation

Article Preview

Abstract:

A wide range of membranes (hydrophobic and hydrophilic) for the task of triethylene glycol dehydration by thermopervaporation was studied. The transport characteristics of the membranes using individual liquids (water, triethylene glycol) were determined in the thermopervaporation process with varying temperature of the feed flux (40-). The maximum water flux (3.7 kg/m2∙h) in all the studied temperature ranges was demonstrated by the commercial pervaporation hydrophobic PolyAn membrane. For the commercial hydrophilic membrane MDK-I water flux at 80 °С was 2.8 kg/m2∙h. During thermopervaporation of triethylene glycol in the studied temperature range, TEG flux through the membranes was not observed, which shows the advantage of this process for TEG dehydration. For the first time, experiments were provided using PolyAn membranes to removal water from TEG by thermopervaporation with porous condenser. The maximum permeate flux (1.9 kg/m2∙h) was achieved for the PolyAn membrane at a concentration of 70 % wt. TEG in water

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-189

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Piemonte, M. Maschietti, F.A. Gironi, Triethylene Glycol-Water System: A study of the TEG regeneration processes in natural gas dehydration plants, Energ. Sources Part A. 34 (2012) 456-464.

DOI: 10.1080/15567031003627930

Google Scholar

[2] H. Lin, S.M. Thompson, A. Serbanescu-Martin, J.G. Wijmans, K.D. Amo, K.A. Lokhandwala, T.C. Merkel, Dehydration of natural gas using membranes. Part I: Composite membranes, J. Membr. Sci. 413 (2012) 70-81.

DOI: 10.1016/j.memsci.2012.04.009

Google Scholar

[3] P.Yu. Apel, O.V. Bobreshova, A.V. Volkov, V.V. Volkov, V.V. Nikonenko, I.A. Stenina, A.N. Filippov, Yu.P. Yampolskii, A.B. Yaroslavtsev. Prospects of Membrane Science Development, Membr. Membr. Technol. 1 (2019) 45-63.

DOI: 10.1134/s2517751619020021

Google Scholar

[4] J. Kujawski, A. Rozicka, M. Bryjak, W. Kujawski, Pervaporative removal of acetone, butanol and ethanol from binary and multicomponent aqueous mixtures, Sep. Pur. Technol. 132 (2014) 422-429.

DOI: 10.1016/j.seppur.2014.05.047

Google Scholar

[5] E.A. Grushevenko, I.A. Podtynnikov, G.S. Golubev, V.V. Volkov, I.L. Borisov, Polyheptylmethylsiloxane – a novel material for removal of oxygenates from water by pervaporation, Petrol. Chem. 58 (2018) 941-948.

DOI: 10.1134/s0965544118110026

Google Scholar

[6] A. Rozicka, J. Niemistö, R.L. Keiski, W. Kujawski, Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures, J. Membr. Sci. 453 (2014) 108-118.

DOI: 10.1016/j.memsci.2013.10.065

Google Scholar

[7] J.G. Wijmans, A. Ng, A.P. Mairal, Natural gas dehydration apparatus, U.S. Patent No. 7,132,008. (2006).

Google Scholar

[8] R. Guo, C. Hu, B. Li, Z. Jiang, Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: coupling effect and separation performance analysis, J. Membr. Sci. 289 (2007) 191-198.

DOI: 10.1016/j.memsci.2006.11.055

Google Scholar

[9] C. Yu, C. Zhong, Y. Liu, X. Gu, G. Yang, W. Xing, N. Xu, Pervaporation dehydration of ethylene glycol by NaA zeolite membranes, Chem. Eng. Res. Des. 90 (2012) 1372-1380.

DOI: 10.1016/j.cherd.2011.12.003

Google Scholar

[10] K. Dalane, H.F. Svendsen, M. Hillestad, L. Deng, Membrane contactor for subsea natural gas dehydration: Model development and sensitivity study, J. Membr. Sci. 556 (2018) 263-276.

DOI: 10.1016/j.memsci.2018.03.033

Google Scholar

[11] G.S. Golubev, I.L. Borisov, V.V. Volkov, Thermopervaporational removal of isopropanol and butanol from aqueous media with using membranes based on hydrophobic polysiloxanes, Petrol. Chem. 58 (2018) 975-982.

DOI: 10.1134/s0965544118110014

Google Scholar

[12] I.L. Borisov, V.V. Volkov, Thermopervaporation concept for biobutanol recovery: The effect of process parameters, Sep. Pur. Technol. 146 (2015) 33-41.

DOI: 10.1016/j.seppur.2015.03.023

Google Scholar

[13] G.S. Golubev, I.L. Borisov, V.V. Volkov, A.V. Volkov, High-performance reinforced PTMSP membranes for thermopervaporation removal of alcohols from aqueous media, Membr. Membr. Technol. 2 (2020) 45-53.

DOI: 10.1134/s2517751620010047

Google Scholar

[14] I.L. Borisov, G.S. Golubev, V.P. Vasilevsky, A.V. Volkov, V.V. Volkov, Novel hybrid process for bio-butanol recovery: Thermopervaporation with porous condenser assisted by phase separation, J. Membr. Sci. 523 (2017) 291-300.

DOI: 10.1016/j.memsci.2016.10.009

Google Scholar

[15] V. Volkov, I. Borisov, G. Golubev, V. Vasilevsky, D. Matveev, G. Bondarenko, A. Volkov, Sorption-assisted thermopervaporation method for organics recovery from ABE fermentation broth, J. Chem. Technol. Biotechnol. 95 (2020) 40-51.

DOI: 10.1002/jctb.6196

Google Scholar

[16] A.V. Volkov, E.G. Novitsky, I.L. Borisov, V.P. Vasilevsky, V.V. Volkov, Porous condenser for thermally driven membrane processes: Gravity independent operation, Sep. Pur. Technol. 171 (2016) 191-196.

DOI: 10.1016/j.seppur.2016.07.038

Google Scholar