Quantitative Structure-Property Relationship (QSPR) Study on the Complex Compounds Formed From Gadolinium(III) with Dibutyl Dithiophosphate Derivatives Ligands Based on Molecular Descriptors

Article Preview

Abstract:

A study of the quantitative relationship of structure and property (Quantitative Structure Property Relationship (QSPR) has been carried out on complex compounds formed between gadolinium (Gd) and dibutyldithiophosphate (DBDTP) derivative ligands. This study is a part of our laboratory research program on the development of extractant ligands, including DBDTP in extraction for the separation and purification of rare-earth elements (REEs), specifically Gd. Gadolinium has also been a part of the research program about its use in the synthesis of magnetic resonance imaging (MRI) contrast agents, for the diagnosis of various diseases. This chemical calculation research aims to analyze the effect of descriptors in the form of parameters of the physical-chemical properties of bond lengths, bond angles, and bond energies on the stability of Gd complex compounds with DBDTP derivative ligands. To get descriptors PM7 semi-empirical method was used, while for data analysis, Multiple Linear Regression Analysis was used, assuming the model error is normally distributed with zero mean and constant variance. Furthermore, data processing was done using SPSS software. This research was conducted by involving 28 DBDTP derivative ligands and using multiple linear regression analysis. The regression equation is Y ̂ = - 0.966 + 0.586 V1 - 0.014 V2 + 0.000 V3. From the resulted research data it was found that there are three findings, namely: (1) bond length and bond angle have a significant simultaneous effect on stability of Gd complex compounds with DBDTP derivative ligands; (2) bond length and bond angle have a partially significant effect on stability of Gd complex compounds with DBDTP derivative ligands; (3) bond length proved to have a significant dominant effect on stability of Gd complex compounds with DBDTP derivative ligands.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Pratomo, U., Anggraeni, A., Muthalib. Soedjanaatmadjaa, U.M.S. Yuhelda, Pinarti, I., Hidayat, and Bahti, H. H, Synthesis, Characterization, and Molecular Modelling of Synthesis, Characterization, and Molecular Modelling of Bis (Aquo) Tris (Dibutyldithiophosphato) Gadolinium (III). Procedia Chemistry, 17 (2015) 207–215. http://doi.org/ 10.1016/j.proche.2015.12.129.

DOI: 10.1016/j.proche.2015.12.129

Google Scholar

[2] Zhu, B., Wu, D., Yang, Y., Chen, Y., Li, W., Guo, J., & Wang, Q. Selective removal of la(III) ions using super-paramagnetic nanosorbent coated by saponified sec-octylphenoxy acetic acid. Journal of Chemical and Engineering Data, 57(2) (2012) 553–560. https://doi.org/10.1021/je201122f.

DOI: 10.1021/je201122f

Google Scholar

[3] Wu, D., Zhang, L., Wang, L., Zhu, B., & Fan, L. Adsorption of lanthanum by magnetic alginate-chitosan gel beads. Journal of Chemical Technology and Biotechnology, 86(3) (2011) 345–352. https://doi.org/10.1002/jctb.2522.

DOI: 10.1002/jctb.2522

Google Scholar

[4] Anggraeni, A., Yuhelda, Hidayat, A. T., Muthalib, A., Pratomo, U., Bahti, H. H., Pinarti, I. Synthesis, Characterization, and Molecular Modelling of Bis(Aquo)Tris(Dibutyldithiophosphato) Gadolinium (III). Procedia Chemistry, 17 (2015) 207–215. https://doi.org/10.1016/ j.proche.2015.12.129.

DOI: 10.1016/j.proche.2015.12.129

Google Scholar

[5] Ruswanto, R., Nofianti, T., Mardianingrum, R., & Lestari, T. Desain dan Studi In Silico Senyawa Turunan Kuwanon-H sebagai Kandidat Obat Anti-HIV. Jurnal Kimia VALENSI, 4(1), (2018). 57–66. https://doi.org/10.15408/jkv.v4i1.6867.

DOI: 10.15408/jkv.v4i1.6867

Google Scholar

[6] Titin Sofyatin, Nunik Nurlina, Anni Anggraeni, H. H. B. Penentuan koefisien distribusi, efisiensi ekstraksi dan faktor pemisahan pada ekstraksi gadolinium dan samarium dengan ligan dibutilditiofosfat. Chimica et Natura Acta, 1 (2016) 47–51. https://doi.org/10.24198/cna.v4.n1. 10448.

DOI: 10.24198/cna.v4.n1.10448

Google Scholar

[7] Gupta, C. K., & Krishnamurthy, N. Extractive metallurgy of rare earths. International Materials Reviews, 37(1), (2014). 197–248. https://doi.org/10.1179/imr.1992.37.1.197.

DOI: 10.1179/imr.1992.37.1.197

Google Scholar

[8] Fauzia, R. P., Abdul Mutalib, R Ukun Soedjanaatmadja M S, A., & Anggraeni. Dietilentriaminpentaasetat-Folat Comparison of Synthesis Method and Characterization of Ethylenediamine-Folate As a Precursor in the Synthesis of Mri Contrast Agent Gadolinium Diethylenetriaminepentaacetate-Folate. Sains Dan Terapan Kimia, 11 (2017) 6–14. http://dx.doi.org/10.20527/jstk.v11i1.3168.

DOI: 10.20527/jstk.v11i1.3168

Google Scholar

[9] Sandıkcı, Ö. Researching Islamic marketing: past and future perspectives. Journal of Islamic Marketing, 2(3), (2011), 246–258. https://doi.org/10.1108/17590831111164778.

DOI: 10.1108/17590831111164778

Google Scholar

[10] Kubinyi, H. QSAR: Hansch analysis and related approaches. Trends in Pharmacological Sciences 16 (1995). https://doi.org/10.1016/S0165-6147(00)89046-X.

DOI: 10.1016/s0165-6147(00)89046-x

Google Scholar

[11] Iqmal Tahir, Karna Wijaya, M. U. Y. Quantitative Relationships Between Molecular Structure and, 2(2) (2002) 83–90. https://doi.org/10.22146/ijc.21918.

Google Scholar

[12] Ekins, S., Mestres, J., & Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. British Journal of Pharmacology, 152(1) (2007) 21–37. https://doi.org/10.1038/sj.bjp.0707306.

DOI: 10.1038/sj.bjp.0707306

Google Scholar

[13] Wibowo, Y. M., Mudasir, M., & Pranowo, H. D. Quantitative Structure-Activity Relationship Analysis of Organophosphate Insecticides Using Electronic and Molecular Parameters. Makara Journal of Science, 21(3) (2017) 131–135. https://doi.org/10.7454/mss.v21i3.5965.

DOI: 10.7454/mss.v21i3.5965

Google Scholar