Computational Study: Noncovalent Interaction of Cys-Ala Peptide with Alkaline Earth Metal Ions and its Conformation Changes

Article Preview

Abstract:

The study of the intermolecular interactions is important to explain the phenomenon occurred on the human body. One of the most important processes that can be studied is the interaction of the peptide with metal ions. In this study, a computational approach was harnessed to predict the interaction and the changes in peptide’s conformation between Cys-Ala peptide which is one of the important amino acids in e-cadherin with some of alkaline earth metal ions. Cys-Ala peptide (Ac-CA-NH2) was used as a molecular model in this calculation. All the molecular structure involved in the interaction was optimized by density functional theory DFT/M06-2X, and basis set 6-31G** to obtain minimum energy, the interaction energies, and the changes in its conformation. The results showed that the interaction energy of Ac-CA-NH2 with alkaline earth metal ions from top to bottom based on the Periodic table is getting higher in a row. The interaction energies of Ac-CA-NH2 with Be2+, Mg2+ and Ca2+ ions are -2.393kcal, -17.489 kcal, and -25.938 kcal respectively. These energies were obtained from the interaction of the peptide with ions in a water solvent. The changes in the peptide's bond length and dihedral angle indicate a conformational change in the Cys-Ala peptide, but it still maintains the trans conformation in its peptide bonds. The results and evaluations of this study may be used for further research considerations and may be applied to enzymes or other peptides that have the Cys-Ala residue.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-135

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Siahaan, R. Christian, A.N. Fauziah, D. Hudiyanti, V.D. Prasasty, Ab-initio computational study of noncovalent interaction between peptide and alkaline metal ions on HF/6-31 G∗∗ level, AIP Conf. Proc. 2049 (2018). https://doi.org/10.1063/1.5082458.

DOI: 10.1063/1.5082458

Google Scholar

[2] C. Rajesh, C. Majumder, H. Mizuseki, Y. Kawazoe, A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube, J. Chem. Phys. 130 (2009). https://doi.org/10.1063/1.3079096.

DOI: 10.1063/1.3079096

Google Scholar

[3] A. Alaofi, E. Farokhi, V.D. Prasasty, A. Anbanandam, K. Kuczera, T.J. Siahaan, Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations, J. Biomol. Struct. Dyn. 35 (2017) 92–104. https://doi.org/10.1080/07391102.2015.1133321.

DOI: 10.1080/07391102.2015.1133321

Google Scholar

[4] G. Meng, K. Fütterer, Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase, BMC Struct. Biol. 8 (2008) 16. https://doi.org/10.1186/1472-6807-8-16.

DOI: 10.1186/1472-6807-8-16

Google Scholar

[5] G.H. Peters, O.H. Olsen, A. Svendsen, R.C. Wade, Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase, Biophys. J. 71 (1996) 119–129. https://doi.org/10.1016/S0006-3495(96)79207-X.

DOI: 10.1016/s0006-3495(96)79207-x

Google Scholar

[6] S. Bhuvanendran, N.A. Hanapi, N. Ahemad, I. Othman, S.R. Yusof, M.F. Shaikh, Embelin, a potent molecule for Alzheimer's disease: A proof of concept from blood-brain barrier permeability, acetylcholinesterase inhibition and molecular docking studies, Front. Neurosci. 13 (2019) 1–10. https://doi.org/10.3389/fnins.2019.00495.

DOI: 10.3389/fnins.2019.00495

Google Scholar

[7] B. Safitri, D. Hudiyanti, M.D. Laksitorini, N.A. Sasongko, P. Siahaan, Intermolecular hydrogen bond interactions in N -carboxymethyl chitosan and n H2O: DFT and NBO studies, AIP Conf. Proc. 2237 (2020). https://doi.org/10.1063/5.0005287.

DOI: 10.1063/5.0005287

Google Scholar

[8] P. Singla, M. Riyaz, S. Singhal, N. Goel, Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction, Phys. Chem. Chem. Phys. 18 (2016) 5597–5604. https://doi.org/10.1039/c5cp07078c.

DOI: 10.1039/c5cp07078c

Google Scholar

[9] P. Siahaan, N.E. Darmastuti, S. Aisyafalah, N.A. Sasongko, D. Hudiyanti, M. Asy'ari, V.D. Prasasty, Probing the interaction between EC1-EC2 domain of E-cadherin with conformational structure of cyclic ADTC7 (Ac-CDTPDC-NH 2 ) peptide using molecular docking approach , J. Phys. Conf. Ser. 1524 (2020) 12081. https://doi.org/10.1088/1742-6596/1524/1/012081.

DOI: 10.1088/1742-6596/1524/1/012081

Google Scholar

[10] P. Atkins, J. de Paula, J. Keeler, Atkins' PHYSICAL CHEMISTRY, 2018. https://doi.org/10.1017/CBO9781107415324.004.

Google Scholar

[11] A.H.C. Horn, Essentials of Computational Chemistry, Theories and Models By Christopher J. Cramer. Wiley: Chichester, England. 2002. 562 pp. ISBN 0-471-48551-9 https://doi.org/10.1021/ci010445m.

DOI: 10.1021/ci010445m

Google Scholar

[12] Kohn, Walter, Nobel lecture: Electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys. 71 (1999) 1253–1266. https://doi.org/S0034-6861(99)00505-X.

DOI: 10.1103/revmodphys.71.1253

Google Scholar

[13] Y. Zhao, D.G. Truhlar, Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions, J. Chem. Theory Comput. 4 (2008) 1849–1868. https://doi.org/10.1021/ct800246v.

DOI: 10.1021/ct800246v

Google Scholar

[14] R. Peverati, D.G. Truhlar, Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372 (2014). https://doi.org/10.1098/rsta.2012.0476.

DOI: 10.1098/rsta.2012.0476

Google Scholar

[15] M. Isegawa, R. Peverati, D.G. Truhlar, Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies, J. Chem. Phys. 137 (2012). https://doi.org/10.1063/1.4769078.

DOI: 10.1063/1.4769078

Google Scholar

[16] M.D. Sweeney, A.P. Sagare, B. V. Zlokovic, Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders, Nat. Rev. Neurol. 14 (2018) 133–150. https://doi.org/10.1038/nrneurol.2017.188.

DOI: 10.1038/nrneurol.2017.188

Google Scholar

[17] R.A. Lusiana, V.D.A. Sangkota, N.A. Sasongko, G. Gunawan, A.R. Wijaya, S.J. Santosa, D. Siswanta, M. Mudasir, M.N.Z. Abidin, S. Mansur, M.H.D. Othman, Permeability improvement of polyethersulfone-polietylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (TPP-CS) coating, Int. J. Biol. Macromol. 152 (2020) 633–644. https://doi.org/10.1016/j.ijbiomac.2020.02.290.

DOI: 10.1016/j.ijbiomac.2020.02.290

Google Scholar

[18] Sally A. Kim, C.-Y. Tai, L.-P. Mok, E.A. Mosser, E.M. Schuman, Calcium-dependent dynamics of cadherin interactions at cell-cell junctions, Natl. Acad. Sci. 108 (2017) 2017. https://doi.org/10.1073/pnas.

DOI: 10.1073/pnas.1019003108

Google Scholar

[19] D.A. Schultz, A.M. Friedman, M.A. White, R.O. Fox, The crystal structure of the cis -proline to glycine variant (P114G) of ribonuclease A , Protein Sci. 14 (2005) 2862–2870. https://doi.org/10.1110/ps.051610505.

DOI: 10.1110/ps.051610505

Google Scholar

[20] I. Stavropoulos, K. Golla, N. Moran, F. Martin, D.C. Shields, Cadherin juxtamembrane region derived peptides inhibit TGFβ1 induced gene expression, Bioarchitecture. 4 (2014) 103–110. https://doi.org/10.4161/bioa.32143.

DOI: 10.4161/bioa.32143

Google Scholar

[21] Z. Jing, R. Qi, C. Liu, P. Ren, Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field, J. Chem. Phys. 147 (2017). https://doi.org/10.1063/1.4985921.

DOI: 10.1063/1.4985921

Google Scholar

[22] E. Scoppola, A. Sodo, S.E. McLain, M.A. Ricci, F. Bruni, Water-peptide site-specific interactions: A structural study on the hydration of glutathione, Biophys. J. 106 (2014) 1701–1709. https://doi.org/10.1016/j.bpj.2014.01.046.

DOI: 10.1016/j.bpj.2014.01.046

Google Scholar

[23] N.A. Sasongko, P. Siahaan, R.A. Lusiana, V. Prasasty, Understanding the interaction of polysulfone with urea and creatinine at the molecular level and its application for hemodialysis membrane, J. Phys. Conf. Ser. 1524 (2020) 12084. https://doi.org/10.1088/ 1742-6596/1524/1/012084.

DOI: 10.1088/1742-6596/1524/1/012084

Google Scholar

[24] H.D. Nguyen, A.J. Marchut, C.K. Hall, Solvent effects on the conformational transition of a model polyalanine peptide, Protein Sci. 13 (2008) 2909–2924. https://doi.org/10.1110/ ps.04701304.

DOI: 10.1110/ps.04701304

Google Scholar