Recombinant Expression and Biochemical Characterization of Levansucrase from Halophilic Bacteria Bacillus licheniformis BK1 and BK2

Article Preview

Abstract:

Levansucrase was an extracellular polysacharride (EPS) which has a role in synthesizing levans by transferring fructose moiety from sucrose to acceptor molecules. In the previous study, we have successfully cloned the levansucarese gene from two Bacillus licheniformis strains of BK1 and BK2 labeled as lsbl-bk1 and lsbl-bk2. The present study aims to optimize the expression level of both genes in E. coli expression system and also to obtain the optimum conditions for the recombinant enzymes activity by applying the response surface methodology (RSM). The optimization result found that the highest Lsbl-bk1 production in E. coli expression system was occurred when the recombinant cells grown in the medium containing 0.6% (w/v) NaCl at 42°C, and induced by 0.6 mM IPTG. Different optimum conditions were found for Lsbl-bk2 production. It was achieved when 1.1% (w/v) NaCl added to the production medium and induced by 0.7 mM IPTG at 40°C. RSM optimization result for biochemical characterization of Lsbl-bk1 levansucrase showed the highest specific activity achieved at 56°C and pH 7.5, whereas for the Lsbl-bk2 levansucrase reached the highest specific activity at 50°C and pH 7.5. The addition of Co2+, Ti2+, Mg2+, Ba2+, Zn2+, Fe3+, Ca2+ metal ion to both levansucrases solution did not significantly altered their specific activity, indicating that both levansucrases are not metalo enzymes. Furthermore, the specific activity of levansucrase was also not affected by the addition of 1-25% (w/v) NaCl, suggesting that the variation of ionic strength did not alter the native state of both enzymes. The plot results of levansucrase specific activities toward sucrose concentration showed that both levansucrases follow Michaelis-Menten profile with kcat/KM values ​​about 3.8 and 3.6 s-1/mM respectively. These data indicated that the recombinant levansucrases from halophilic bacteria B. licheniformis BK1 and BK2 are a non metaloenzyme with high affinity and binding rate to sucrose substrate, in which the catalytic efficiency on hydrolysis reactions is relatively low.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-106

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.E. Ortiz-soto, M. Rivera, E. Rudin and A. Lo, Selected mutations in Bacillus subtilis levansucrase semi-conserved regions affecting its biochemical properties, Protein Eng. Des. Sel. 21 (2008) 589–595.

DOI: 10.1093/protein/gzn036

Google Scholar

[2] T. Pijning, M.A. Anwar, M. Böger, J.M. Dobruchowska, H. Leemhuis, S. Kralj, L. Dijkhuisen and B.W. Dijkstra, Crystal structure of inulosucrase from Lactobacillus: Insights into the substrate specificity and product specificity of GH68 fructansucrases, J. Mol. Biol. 412(1) (2011) 80–93.

DOI: 10.1016/j.jmb.2011.07.031

Google Scholar

[3] L.K. Ozimek, S. Kralj, M. J.C. Maarel, M.J.E.C. Van Der Marel and L. Dijkhuizen, The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions, Microbiol. 152 (2006) 1187–1196.

DOI: 10.1099/mic.0.28484-0

Google Scholar

[4] J.M. Divya, K.R. Sugumaran, Fermentation parameters and condition affecting Levan production and its applications, J. chem. pharm. res. 7(2) (2015) 861–865.

Google Scholar

[5] A. Szwengiel, M. Czarnecka and Z. Czarnecki, Levan synthesis during associated of levansucrase and Candida Cacaoi DSM 2226 Yeast, Pol. J. Food Nutr. Sci. 57(4) 433-440.

Google Scholar

[6] F. Tian, S. Karboune and A. Hill, A, Synthesis of fructooligosaccharides and oligolevans by the combined use of levansucrase and endo-inulinase in one-step bi-enzymatic system, Innov. Food Sci. Emerg. 22 (2014) 230–238.

DOI: 10.1016/j.ifset.2013.12.004

Google Scholar

[7] O. Li, C. Lu, A. Liu, L. Zhu, P. M. Wang, C.D. Qian and X.C. Wu, Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment, Bioresour. Technol. 134 (2013) 87–93.

DOI: 10.1016/j.biortech.2013.02.013

Google Scholar

[8] A. Homann, R. Biedendieck, S.G. Otze and D. Jahn, Insights into polymer versus oligosaccharide synthesis : mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium, Biochem. J. 198 (2007) 189–198.

DOI: 10.1042/bj20070600

Google Scholar

[9] L. Caputi, S.A. Nepogodiev, M. Malnoy, M. Rejzek, R.A. Field and S. Benini, Biomolecular characterization of the levansucrase of Erwinia amylovora , a promising biocatalyst for the synthesis of fructooligosaccharides, J. Agric.Food Chem. 61(2013) 12265-12273.

DOI: 10.1021/jf4023178

Google Scholar

[10] T. Visnapuu, K. Mardo, C. Mosoarca, A.D. Zamfir, A. Vigants and T. Alamäe, Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: Substrate specificity, polymerizing properties and usage of different acceptors for fructosylation. J. Biotechnol. 155(3) (2011) 338–349.

DOI: 10.1016/j.jbiotec.2011.07.026

Google Scholar

[11] L. Hernandez, J. Arrieta, L. Betancourt, V. Falcon, J. Madrazo, A. Coego and C. Mernendez, Levansucrase from Acetobacter diazotrophicus SRT4 Is Secreted via periplasm by a signal-peptide-dependent pathway. Curr. Microbiol. 39 (1995) 146-152.

DOI: 10.1007/s002849900436

Google Scholar

[12] S. Silbir, S. Dagbagli, S. Yegin, T. Baysal and Y. Goksungur, Levan production by Zymomonas mobilis in batch and continuous fermentation systems, Carbohydr. Polym. 99 (2014) 454–461.

DOI: 10.1016/j.carbpol.2013.08.031

Google Scholar

[13] A. Poli, H. Kazak, B. Gürleyendaǧ, G. Tommonaro, G. Pieretti, E.T. Öner and B. Nicolaus, High level synthesis of levan by a novel Halomonas species growing on defined dedia. Carbohydr. Polym. 78(4) (2009) 651–657.

DOI: 10.1016/j.carbpol.2009.05.031

Google Scholar

[14] H. K. Sarilmiser, O. Ates, G. Ozdemir, K.Y. Arga and E.T. Oner, Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J. Biosci. Bioeng. 119(4) (2015) 455–463.

DOI: 10.1016/j.jbiosc.2014.09.019

Google Scholar

[15] E.T. Oner, L. Hernandez and J. Combie, Review of levan polysaccharide: from a century of past experiences of past experiemces to future prospects, Biotehnol. Adv. 34 (2016) 827-844.

DOI: 10.1016/j.biotechadv.2016.05.002

Google Scholar

[16] B.G. Joseph, S. Pichaimuthu, An Overview of the parameters for recombinant protein expression in Escherichia coli, J. Cell Sci. Ther. 6(5) (2015) 1-7.

DOI: 10.4172/2157-7013.1000221

Google Scholar

[17] W. Li, S. Yu, T. Zhang, B. Jiang and W. Mu, Recent novel applications of levansucrases. Appl. Microbiol. Biot. 99(17) (2015), 6959–6969.

DOI: 10.1007/s00253-015-6797-5

Google Scholar

[18] F.W. Studier, Protein Production by Auto-introduction in high-density shaking cultures, Protein Expr. Purif. 41 (2005) 207-234.

DOI: 10.1016/j.pep.2005.01.016

Google Scholar

[19] J. Sambrook, D.W Russell. (2001). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, p.15.14.

Google Scholar

[20] G. Hanrahan, E. Garcia and K. Miller, Experimental design and response surface medlling: A method development application for the determination of reduced inorganic species in environmental samples, J. Environ. Inform. 9(2) (2007) 71-79.

DOI: 10.3808/jei.200700088

Google Scholar

[21] S.L.C. Ferreira, V.A. Lemos, V.S. De, G.P. Erik, A.F. Queiroz, C.S.A. Felix and R.V Oliveira, Multivariate optimization techniques in analytical chemistry - an overview. Microchem. J. 140 (2018) 176–182.

DOI: 10.1016/j.microc.2018.04.002

Google Scholar

[22] R.S.S. Teixeira, A.S.A. da Silva and V.S.F Leitao, Amino acids interference on the quantification of reducing sugars by the 3,5-dinitrosalicylic acid assay mislead carbohydrae activity measurements, Carbohydr. Res. 363 (2012) 33-37.

DOI: 10.1016/j.carres.2012.09.024

Google Scholar

[23] K.S. Belghith, I. Dahech, H. Belghith, H. Mejdoub, Microbial production of levansucrase for synthesis of fructooligosaccharides and levan, Int. J. Biol. Macromol. 50 (2012) 451-458.

DOI: 10.1016/j.ijbiomac.2011.12.033

Google Scholar

[24] M.M. Bradford, A Rapid and sensitive method for quantitation microgram quatities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 254 (1976) 248-254.

DOI: 10.1016/0003-2697(76)90527-3

Google Scholar

[25] M. Victor, H. Moura, L. Dobler, M. Limoeiro, E. Gutarra and R. Volcan, Studying the expression of a lipase from Pyrococcus furiosus using response surfaces, Protein Expres. Purif. 88(1) (2013) 26-32.

DOI: 10.1016/j.pep.2012.11.008

Google Scholar

[26] A.L. Larentis, J. Fabiana, M. Quintal and S. Esteves, Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of leptospiral protein in E. coli using shaking flasks and microbioreactor, BMC Res. Notes. 7 (2014) 671.

DOI: 10.1186/1756-0500-7-671

Google Scholar

[27] L. Lu, F. Fu, R. Zhao, L. Jin, C. He, L. Xe and M. Xiao, A recombinant levansucrase from Bacillus licheniformis 8-37-0-1 catalyzes versatile transfructosylation, Process Biochem. 49 (2014) 1503-1510.

DOI: 10.1016/j.procbio.2014.05.012

Google Scholar

[28] S. Nakapong, R. Pichyangkura, K. Ito, M. Iizuka and P. Pongsawasdi, High expression level of levansucrase from Bacillus licheniformis RN-01 and synthesis of levan nanoparticles, Int. J. Biol. Macromol. 54(1) (2013) 30-36.

DOI: 10.1016/j.ijbiomac.2012.11.017

Google Scholar

[29] V. Vaidya, G. Prabu and D.T. Prasad, Heterologous Expression and Characterization of Thermostable Levansucrase (BsSacB) from Bacillus subtilis BB03, J. Biol. Sci. 15(1) (2015) 10-22.

DOI: 10.3844/ojbsci.2015.10.22

Google Scholar

[30] H.K. Kang, M.Y. Seo, E.S. Seo, D. Kimi, S.Y. Chung, A. Kimura, D.F. Day and J.F. Robyt, Cloning and expression of levansucrase from Leuconostoc mesenteroides B-512 FMC in Escherichia coli, Biochim. Biophy. Acta. 1727 (2005) 5-15.

DOI: 10.1016/j.bbaexp.2004.10.012

Google Scholar

[31] S. Gao, X. Qi, D.J. Hart, H. Gao and Y. An, Espression and characterization of levansucrase from Clostridium acetobutylicum, J Agr Food Chem. 65 (2017) 867-871.

DOI: 10.1021/acs.jafc.6b05165

Google Scholar

[32] R. Ishida, K. Sakaguchi and C. Matsuzaki, Levansucrase from Leuconostoc mesenteroides NTM048 produces a levan exopolysaccharide with immunomodulating activity, Biotech. Lett. 38(4) (2016) 681-687.

DOI: 10.1007/s10529-015-2024-9

Google Scholar