Personalized Cooling System Using Phase Change Materials

Article Preview

Abstract:

The most widely used personal protective system against heat stress is cooling vest that contains phase change material (PCM) for thermal energy storage. PCMs have the property of absorbing/releasing heat when they change their phase at their melting point. If the PCM has greater heat of fusion, more heat is absorbed; furthermore, good thermal conductivity assists in efficient removal of heat. In this work different PCMs are explored for use in personalized cooling vest. Hexadecane is finally selected to be used as a PCM having a melting point of 18-20 °C (which lies in the human thermal comfort) and heat of fusion of 241 kJ/kg. Carbon nanotubes have excellent capability of increasing thermal conductivity of a material. Carbon nanotubes were added in hexadecane, and latent heat of fusion of the mixture increased up to 262.6 kJ/kg.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-192

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sharma, P. Ganesan, V. Tyagi, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Convers. Manag. 95, (2015) 193-228.

DOI: 10.1016/j.enconman.2015.01.084

Google Scholar

[2] H. Hamdan, N. Ghaddar, D. Ouahrani, K. Ghali, PCM cooling vest for improving thermal comfort in hot environment, Int. J. Therm. Sci. 102 (2016) 154-167.

DOI: 10.1016/j.ijthermalsci.2015.12.001

Google Scholar

[3] V. Tyagi, S. Kaushik, S. Tyagi, Development of phase change materials based microencapsulated technology for buildings, Renew. Sust. 15(2) (2011) 1373-1391.

DOI: 10.1016/j.rser.2010.10.006

Google Scholar

[4] Y. Cui, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Sol. Energ. Mat. Sol. C.95(4) (2011) 1208-1212.

DOI: 10.1016/j.solmat.2011.01.021

Google Scholar

[5] M. Thambidurai, K. Panchabikesan, Review on phase change material based free cooling of buildings—the way toward sustainability, J. Ener. Stor. 4 (2015) 74-88.

DOI: 10.1016/j.est.2015.09.003

Google Scholar

[6] Information on https://energy.gov/public-services/homes/heating-cooling.

Google Scholar

[7] Government of Pakistan - Ministry of Finance. Pakistan Economic Survey 2012-13. 2013. Page 195.

Google Scholar

[8] S. Chandel, and T. Agarwal, Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials, Renew. Sust. 67 (2017) 581-596.

DOI: 10.1016/j.rser.2016.09.070

Google Scholar

[9] B. Zalba, J. Marı́n, L. Cabeza, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. 23(3) (2003) 251-283.

DOI: 10.1016/s1359-4311(02)00192-8

Google Scholar

[10] L. Fan, J. Khodadadi, Thermal conductivity enhancement of phase change materials for thermal energy storage - a review, Renew. Sust. 15(1) (2011). 24-46.

DOI: 10.1016/j.rser.2010.08.007

Google Scholar

[11] H. Inaba, P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material, Int. J. Heat. Mass. Tran. 32(4) (1997) 307-312.

DOI: 10.1007/s002310050126

Google Scholar

[12] T. Feczkó, L. Trif, D. Horák, Latent heat storage by silica-coated polymer beads containing organic phase change materials, J. Sol. 132 (2016) 405-414.

DOI: 10.1016/j.solener.2016.03.036

Google Scholar

[13] D. Feldman, M. Shapiro, D. Banu, C. Fuks, Fatty acids and their mixtures as phase-change materials for thermal energy storage, Sol. Ener.Mater. 18(3-4) (1989) 201-216.

DOI: 10.1016/0165-1633(89)90054-3

Google Scholar

[14] A. Karaipekli, A. Sarı, Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage, J. Sol. 83(3) (2009) 323-332.

DOI: 10.1016/j.solener.2008.08.012

Google Scholar

[15] A. Sarı, A. Karaipekli, C. Alkan, Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material, Chem. Eng. 155(3) (2009) 899-904. ]16] A. Shukla, D. Buddhi, R. Sawhney, Thermal cycling test of few selected inorganic and organic phase change materials, Renew. Ener. 33(12) (2008) 2606-2614.

DOI: 10.1016/j.cej.2009.09.005

Google Scholar

[17] K. Shahbaz, I.-al Nashef, R. Lin, M. Hashim, F. Mjalli, M. Farid, A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials, Sol. Ener. Mat. Sol. C. 155 (2016) 147-154.

DOI: 10.1016/j.solmat.2016.06.004

Google Scholar

[18] M. Telkes, Nucleation of Supersaturated Inorganic Salt Solutions, J. Ind. Eng. Chem. 44(6) (1952) 1308-1310.

DOI: 10.1021/ie50510a036

Google Scholar

[19] R. Naumann, H. Emons, Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials, J. Therm. Anal. Calorim. 35(3) (1989) 1009-1031.

DOI: 10.1007/bf02057256

Google Scholar

[20] F. Porisini, Salt hydrates used for latent heat storage: Corrosion of metals and reliability of thermal performance, J. Sol. 41(2) (1988) 193-197.

DOI: 10.1016/0038-092x(88)90136-3

Google Scholar

[21] B. He, V. Martin, and F. Setterwall, Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage, Fluid Phase Equilibr. 212(1-2) (2003) 97-109.

DOI: 10.1016/s0378-3812(03)00270-x

Google Scholar

[22] S. Kim, S. Chang, O. Chung, S. Jeong, and S. Kim, S. Thermal characteristics of mortar containing hexadecane/xGnP SSPCM and energy storage behaviors of envelopes integrated with enhanced heat storage composites for energy efficient buildings, Energ. Buildings. 70, (2014) 472-479.

DOI: 10.1016/j.enbuild.2013.11.087

Google Scholar

[23] S. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5) (2011) 1710-1719.

DOI: 10.1016/j.carbon.2010.12.056

Google Scholar

[24] A. Sarı, Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications. Energy Convers. Manag. 44(14) (2003) 2277-2287.

DOI: 10.1016/s0196-8904(02)00251-0

Google Scholar

[25] M. Rady, Study of phase changing characteristics of granular composites using differential scanning calorimetry. Energy Convers. Manag. 50(5) (2009) pp.1210-1217.

DOI: 10.1016/j.enconman.2009.01.030

Google Scholar

[26] S. Hashempour, M. Vakili, Preparation and characterization of nano enhanced phase change material by adding carbon nano tubes to butyl stearate. J. Exp. Nanosci. 13(1) (2018) 188-198.

DOI: 10.1080/17458080.2018.1502480

Google Scholar

[27] S. Shaikh, K. Lafdi, K. Hallinan, Carbon nanoadditives to enhance latent energy storage of phase change materials. J. Appl. Phys. 103(9) (2008) 094302.

DOI: 10.1063/1.2903538

Google Scholar

[28] Y. Yang, J. Luo, G. Song, Y. Liu, G. Tang, The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials. Thermochim. Acta. 597 (2014) 101-106.

DOI: 10.1016/j.tca.2014.10.014

Google Scholar