Optimization of Maximum Tool Travel Speed for Friction Stir Welded AA-2014-T6 without Compromising the Mechanical Properties

Article Preview

Abstract:

In this study optimization of maximum travel speed that can be achieved for Friction Stir Welding of Aluminum Alloy 2014-T6 without compromising the mechanical properties was carried out. Joints were made at different travel speeds of 200, 300, 400, 500 and 600 mm/min with constant tool rotational speed of 800 rpm and tool tilt angle of 2.The samples were characterized by stereo microscopy, optical microscopy, scanning electron microscopy, Vickers microhardness testing and tensile testing. Microstructural features of as-welded samples revealed refined equiaxed grains in nugget zone and grain growth in the heat effected zone. Tensile test results showed that the tensile strength was maximum at travel speed of 500 mm/min but then decreased after further increasing the travel speed. Hardness in the nugget zones of all welds was lower than that of base material. Fractographic analysis exhibited significant variations in fracture surfaces of tensile samples. A relationship between the welding parameters and resultant heat inputs was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-226

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. M.Thomas, E. D. Nicholas, J. C. Neesham, M. G., Church Temple smith P.,Dawes C. J., Friction Stir Welding, International Patent Application No. PCT/GB92102203 and Great BritainPatent Application No. 9125978, TWI Ltd., Cambridge, UK, (1991).

Google Scholar

[2] H. Uzun, C. D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel, Mater. & Des.,26 (2005)41-46.

DOI: 10.1016/j.matdes.2004.04.002

Google Scholar

[3] M. Jafarzadegan, F. Kargar, T. Saeid, A. Abdollah-Zadeh, F. Malek, Effect of Friction Stir Welding parameters on the microstructures and mechanical properties of 304 Stainless Steels, Eng. of Metall.,30 (2009) 26-30.

Google Scholar

[4] M. W. Mahoaney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling, W. H. Bingel, Properties of friction-stir-welded 7075-T651 Aluminium, Metall. Mater. Trans. A, 29 (1998) 1955-1964.

DOI: 10.1007/s11661-998-0021-5

Google Scholar

[5] C. Huang, S. Kou, Partially melted Aluminium welds liquation mechanisms and directional solidification, Welding Journal. 79 (2000) 113-120.

Google Scholar

[6] R. S. Mishra, Z. Y. Ma, Friction Stir Processing Technology - A Review, Mater Sci. Eng. R, 50 (2005)1-78.

Google Scholar

[7] B. Naga Sunil, B., Anudeep K. Tirupathi, Experimental study on the effect of welding speed and tool pin profiles on AA2014-T6 friction stir welded butt joints, Int. J. of Eng. Res. & Gen. Sci., Volume 3, Issue 1, January-February, 2015, ISSN 2091-2730.

DOI: 10.4314/ijest.v2i5.60163

Google Scholar

[8] R. Kadaganchi, M. R.Gankidi, H.Gokhale, Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology, Def. Technol., 11 (2015) 209-219.

DOI: 10.1016/j.dt.2015.03.003

Google Scholar

[9] B. Anudeep, K. Adepu, P.Naresh, Influence of shoulder interface geometry on microstructural and mechanical properties of 2014 Al alloy fabricated via friction stir welding, Int. J. Curr. Eng. & Technol., ISSN 2277-4106.

Google Scholar

[10] G. Roudini, M. M. Rahvard,S. G. Shiri, Investigation the Maximum Traveling Speed of Friction Stir Welding (FSW) on Properties of 5052 Al Alloy, International Congress on Advances in Welding Science and Technology for Construction, Energy and Transportation Systems (AWST - 2011) 24-25 October 2011, Antalya, Turkey.

DOI: 10.4028/www.scientific.net/amm.110-116.3165

Google Scholar

[11] D. Avula, V. Devuri, M. Cheepu, D. K. Dwivedi, Tensile Properties of Friction Stir Welded Joints of AA 2014-T6 Alloy at Different Welding Speeds, IOP Conf. Series: Mater. Sci. and Eng., 330 (2018) 012-081.

DOI: 10.1088/1757-899x/330/1/012081

Google Scholar

[12] Y. S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063, Metall. Mater. Trans. A, 33 (2002) 625-35.

DOI: 10.1007/s11661-002-0124-3

Google Scholar

[13] W. Tang, X. Guo, J. C. McClure, L. E. Murr, Heat input and temperature distribution in friction stir welding, J. Mater. Process. Manuf. Sci., 71 (1998) 63-72.

DOI: 10.1106/55tf-pf2g-jbh2-1q2b

Google Scholar

[14] S. R. Ren, Z. Y. Ma, L. Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy Scrip. Mater., 56 (2007) 69-72.

DOI: 10.1016/j.scriptamat.2006.08.054

Google Scholar

[15] W. J. Arbegast, P.J. Hartley, Proceedings of the Fifth International Conference on Trends in Welding Research, Pine Mountain, GA, USA, June 1–5, 1998, p.541.

Google Scholar

[16] H. UZun, C. D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel, Mater. & Des., 26 (2005) 41-46.

DOI: 10.1016/j.matdes.2004.04.002

Google Scholar

[17] ASTM E 8M-04 - Standard Test Methods for Tension Testing of Metallic Materials, ASTM International (2004).

Google Scholar

[18] N. Soni, S. Chandrashekhar, A. Kumar, V.R. Chary, Defects Formation during Fricition Stir Welding: A Review, Int. J. of Eng. and Manag. Res., Volume-7, Issue-3. May-June (2017).

Google Scholar

[19] R. H. V. Stone, T. B. Cox, J. R. Low, J. A. Psioda, Microstructural aspects of fracture by dimpled rupture, Int. Met. Rev., Volume- 30, Issue-1, January (1985).

DOI: 10.1179/imtr.1985.30.1.157

Google Scholar

[20] W. B. Lee, Y. M. Yeon and S. B. Jung, Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy, Mater. Sci. & Technol., Volume-19, Issue-11, November (2003).

DOI: 10.1179/026708303225008068

Google Scholar