Evolution of Fatigue Crack Growth Phenomena in Friction Stir Welded AA2xxx Alloys

Article Preview

Abstract:

Aluminum 2xxx alloys have been one of the primary materials for the structural applications of aerospace and transportation industry because of their performance, manufacturing and reliable inspection techniques. Welding is very important in the manufacturing process of structural parts and is now known as the most vital process in the manufacturing route. A relatively new process of joining of materials is friction stir welding process, which was invented by The Welding Institute (TWI) in the UK in 1991. The friction stir welding is mainly employed in aerospace, marine and transportation fields that have high safety requirements. The failure by fatigue is the dominant failure mode for structural weld joints. Since fatigue failure of parts accounts for 50 to 90% of all failures, it is of great significance to understand the fatigue properties of friction stir welded joints. The aim of this overview is to summarize the current research on fatigue crack growth behavior of friction stir welded AA2xxx alloys and critical attention is payed to the damage tolerance performance of friction stir welded aluminum joints that can be affected by welding process parameters, residual stress, stress ratio, environment and post weld treatments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-237

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminum alloys, Mats and Desig 56 (2014) 862–871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[2] A.L. Biro, B.F. Chenelle, D.A. Lados, Processing, Microstructure, and Residual Stress Effects on Strength and Fatigue Crack Growth Properties in Friction Stir Welding: A Review, Met. Mats. Trans B 43 (2012) 1622-1637.

DOI: 10.1007/s11663-012-9716-5

Google Scholar

[3] H. Li, J. Gao, Q. Li, Fatigue of Friction Stir Welded Aluminum Alloy Joints: A Review, Appl. Sci. 8 (2018) 1-19.

DOI: 10.3390/app8122626

Google Scholar

[4] A.M.A. Kraedegh, Fatigue Crack Growth in T Welded Joint of Aluminum Alloy, Doctoral Dissertation, 2017 University of Belgrade.

Google Scholar

[5] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. T.-Smith, C.J. Dawes, GB Patent 9125978-9 (1991).

Google Scholar

[6] J.S. Jesus, J.M. Costa, A. Loureiro, J.M. Ferreira, Fatigue strength improvement of GMAW T-welds in AA 5083 by friction-stir processing, Int. J. Fatigue 97 (2017) 124–134.

DOI: 10.1016/j.ijfatigue.2016.12.034

Google Scholar

[7] P.C. Lin, S.M. Lo, S.P. Wu, Fatigue life estimations of Alclad AA2024-T3 friction stir clinch joints, Int. J. Fatigue 107 (2018) 13–26.

DOI: 10.1016/j.ijfatigue.2017.10.011

Google Scholar

[8] Y. Wang, L. Yu, X. He, C. Wang, R. Yang, H. Chen, Influence of current step on defect for high-speed train aluminum alloy with MIG welding, Electr. Weld. Mach. 46 (2016) 14–17.

Google Scholar

[9] G. Sun, Y. Chen, S. Chen, D. Shang, Fatigue modeling and life prediction for friction stir welded joint based on microstructure and mechanical characterization, Int. J. Fatigue 98 (2017) 131–141.

DOI: 10.1016/j.ijfatigue.2017.01.025

Google Scholar

[10] J.A. Ronevich, B.P. Somerday, Z. Feng, Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe, Int. J. Hydro. Ener. 42 (2017) 4259–4268.

DOI: 10.1016/j.ijhydene.2016.10.153

Google Scholar

[11] C.A.W. Olea, L. Roldo, T.R. Strohaecker, J.F. dos Santos, Friction stir welding of precipitatehardenable aluminum alloys: a review, Weld. World 50 (2006) 78-87.

DOI: 10.1007/bf03263464

Google Scholar

[12] R.S. Mishra, H. Sidhar, Friction Stir Welding of 2xxx Aluminum Alloys Including Al-Li Alloys, Butterworth-Heinemann Elsevier, United Kingdom, (2017).

DOI: 10.1016/b978-0-12-805368-3.00001-7

Google Scholar

[13] N.Z. Khan, A.N. Siddiquee, Z.A. Khan, Friction Stir Welding: Dissimilar Aluminum Alloys, Taylor & Francis, 2017, pp.231-248.

DOI: 10.1201/9781315116815

Google Scholar

[14] R.S. Mishra, P.S. De, N. Kumar, Friction Stir Welding and Processing, Springer New York, 2014, pp.112-118.

Google Scholar

[15] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mat. Sci. Eng. R 50 (2005) 1–78.

Google Scholar

[16] R. Khan, M.B. Bhatty, F. Iqbal, H. Zaigham, I. Salam, Effect of welding parameters on the mechanical and micro-structural properties of friction stir welded AA-2014 joints, IOP Conf. Series: Materials Science and Engineering 146 (2016) 012055.

DOI: 10.1088/1757-899x/146/1/012055

Google Scholar

[17] M.A. Sutton, B. Yang, A.P. Reynolds, J. Yan, Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds Part II. Mechanical characterization, Mat. Sci. Eng. A 364 (2004) 66–74.

DOI: 10.1016/s0921-5093(03)00533-1

Google Scholar

[18] O. Hatamleh, A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints, International Journal of Fatigue 31 (2009) 974-988.

DOI: 10.1016/j.ijfatigue.2008.03.029

Google Scholar

[19] S. Malarvizhi, V. Balasubramanian, Effect of welding processes on AA2219 aluminum alloy joint properties, Trans. Nonferrous Met. Soc. China 21(2011) 962−973.

DOI: 10.1016/s1003-6326(11)60808-x

Google Scholar

[20] D. Gharemani, K. Farhangdoost, Influence of welding parameters on fracture toughness and fatigue crack growth rate in friction stir welded nugget of 2024-T351 aluminum alloy joints, Trans. Nonferr. Met. Soc. China 26 (2016) 2567−2585.

DOI: 10.1016/s1003-6326(16)64383-2

Google Scholar

[21] V.R. Trummer, X. Zhang, P.E. Irving, M. Pacchione, M. Beltrao, J.F. dos Santos, Fatigue Crack Growth Behavior in Friction Stir Welded Aluminum–Lithium Alloy Subjected to Biaxial Loads, Experi. Tech. June (2016).

DOI: 10.1007/s40799-016-0091-z

Google Scholar

[22] G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints, Int. J. Fatig. 25 (2003) 77–88.

DOI: 10.1016/s0142-1123(02)00038-5

Google Scholar

[23] G. Labeas, S. Peppa, Fatigue crack growth behavior of friction stir welded Aluminium alloys, Key Eng. Mats. 665 (2016) 89-92.

DOI: 10.4028/www.scientific.net/kem.665.89

Google Scholar

[24] W. Wang, K. Qiao, J.L. Wu, T.Q. Li, J. Cai, K.S. Wang, Fatigue properties of friction stir welded joint of ultrafine-grained 2024 aluminium alloy, Sci. and Tech. of Weld and Join, online: (2016).

DOI: 10.1080/13621718.2016.1203177

Google Scholar

[25] P.M.G.P. Moreir, P.M.S.T. de Castro, Fatigue crack growth on FSW AA2024-T3 aluminum joints, Key Eng. Mats. 498 (2012) 126-138.

DOI: 10.4028/www.scientific.net/kem.498.126

Google Scholar

[26] Y. Ema, Z.Q. Zhao, B.Q. Liu, W.Y. Li, Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al–Li alloy joints, Mats Sci. Eng. A 569 (2013) 41-47.

DOI: 10.1016/j.msea.2013.01.044

Google Scholar

[27] P.M.G.P. Moreira, A.M.P. de Jesus, M.A.V. de Figueiredo, M. Windisch, G. Sinnema, P.M.S.T. de Castro, Fatigue and fracture behavior of friction stir welded aluminium–lithium 2195, Theo. and App. Frac. Mech. 60 (2012) 1–9.

DOI: 10.1016/j.tafmec.2012.06.001

Google Scholar

[28] S. Machida, O. Takao, M. Shigeru, T. Nakamur, Fatigue Crack Growth of Friction-Stir-Welded Aluminum Alloy, J. Aircraft 54 2 (2016) 1-10.

Google Scholar

[29] Y.E. Ma, P.E. Irving, T. Fischer, X. Zhang, Effects of residual stresses on fatigue crack propagation in friction stir welded 2198-T8 and 2195-T8 Al-Li alloy joints. 12th International Conference on Fracture 2009, ICF-12. 3. 1797-1806.

DOI: 10.2514/1.c031242

Google Scholar

[30] M.T. Milan, W.W. BoseFilho, C.O.F.T. Ruckert, J.R. Tarpani, Fatigue behavior of friction stir welded AA2024-T3 alloy: longitudinal and transverse crack growth, Fatigue Fract Engng Mater Struc. 31(2008) 526–538.

DOI: 10.1111/j.1460-2695.2008.01234.x

Google Scholar

[31] K. Kazuya, A. Motoo, T. Okada, T. Nakamura, S. Machida, S. Fujita, Fatigue crack propagation property of friction stir welded 2024-T3 aluminum alloy, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4 - 7 May 2009, California.

DOI: 10.2514/6.2009-2619

Google Scholar

[32] L. Fratini, S. Pasta, A.P. Reynolds, Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects, Int. J. Fati. 31 (2009) 495–500.

DOI: 10.1016/j.ijfatigue.2008.05.004

Google Scholar

[33] L. Wang, L. Hui, S. Zhou, L. Xu, B. He, Effect of corrosive environment on fatigue property and crackpropagation behavior of Al 2024 friction stir weld, Trans. Nonferrous Met. Soc. China 26 (2016) 2830−2837.

DOI: 10.1016/s1003-6326(16)64411-4

Google Scholar

[34] M.T. Milan, W.W. Bose Filho J.R. Tarpani, Fatigue Crack Growth Behavior of Friction Stir Welded 2024-T3 Aluminum Alloy Tested Under Accelerated Salt Fog Exposure, J. Mats. Perf. Charc. ASTM - American Society for Testing & Materials, 1-19.

DOI: 10.1520/mpc20130036

Google Scholar

[35] P.J. Haagensen, S.J. Maddox, Recommendations on post weld improvement of steel and aluminum structures. Technical Report IIW Doc. No. XIII-1850-00, International Institute of Welding; (1999).

Google Scholar

[36] C. Vidal, V. Infante, P. Vilaca, Assessment of Improvement Techniques Effect on Fatigue Behaviour of Friction Stir Welded Aerospace Aluminium Alloys, Proc. Eng. 2 (2010) 1605–1616.

DOI: 10.1016/j.proeng.2010.03.173

Google Scholar

[37] A. Kredegh, A. Sedmak, A. Grbovic, N. Milosevic, D. Danicic, Numerical simulation of fatigue crack growth in friction stir welded T joint made of Al 2024 T351 alloy, Proc. Struc. Integ. 2 (2016) 365-372.

DOI: 10.1016/j.prostr.2016.06.383

Google Scholar

[38] A. Tzamtzis, A.T. Kermanidis, Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties, Fratturaed Integrità Strutturale, 35 (2016) 396-404.

DOI: 10.3221/igf-esis.35.45

Google Scholar

[39] M. Zadeh, A. Ali, A.F. Golestaneh, B.B. Sahari, Three dimensional simulation of fatigue crack growth in friction stir welded joints of 2024-T351 Al-alloy, J. Sci. Ind. Res. 68 (2009) 785-792.

DOI: 10.1016/j.matdes.2009.01.006

Google Scholar