[1]
T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminum alloys, Mats and Desig 56 (2014) 862–871.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[2]
A.L. Biro, B.F. Chenelle, D.A. Lados, Processing, Microstructure, and Residual Stress Effects on Strength and Fatigue Crack Growth Properties in Friction Stir Welding: A Review, Met. Mats. Trans B 43 (2012) 1622-1637.
DOI: 10.1007/s11663-012-9716-5
Google Scholar
[3]
H. Li, J. Gao, Q. Li, Fatigue of Friction Stir Welded Aluminum Alloy Joints: A Review, Appl. Sci. 8 (2018) 1-19.
DOI: 10.3390/app8122626
Google Scholar
[4]
A.M.A. Kraedegh, Fatigue Crack Growth in T Welded Joint of Aluminum Alloy, Doctoral Dissertation, 2017 University of Belgrade.
Google Scholar
[5]
W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. T.-Smith, C.J. Dawes, GB Patent 9125978-9 (1991).
Google Scholar
[6]
J.S. Jesus, J.M. Costa, A. Loureiro, J.M. Ferreira, Fatigue strength improvement of GMAW T-welds in AA 5083 by friction-stir processing, Int. J. Fatigue 97 (2017) 124–134.
DOI: 10.1016/j.ijfatigue.2016.12.034
Google Scholar
[7]
P.C. Lin, S.M. Lo, S.P. Wu, Fatigue life estimations of Alclad AA2024-T3 friction stir clinch joints, Int. J. Fatigue 107 (2018) 13–26.
DOI: 10.1016/j.ijfatigue.2017.10.011
Google Scholar
[8]
Y. Wang, L. Yu, X. He, C. Wang, R. Yang, H. Chen, Influence of current step on defect for high-speed train aluminum alloy with MIG welding, Electr. Weld. Mach. 46 (2016) 14–17.
Google Scholar
[9]
G. Sun, Y. Chen, S. Chen, D. Shang, Fatigue modeling and life prediction for friction stir welded joint based on microstructure and mechanical characterization, Int. J. Fatigue 98 (2017) 131–141.
DOI: 10.1016/j.ijfatigue.2017.01.025
Google Scholar
[10]
J.A. Ronevich, B.P. Somerday, Z. Feng, Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe, Int. J. Hydro. Ener. 42 (2017) 4259–4268.
DOI: 10.1016/j.ijhydene.2016.10.153
Google Scholar
[11]
C.A.W. Olea, L. Roldo, T.R. Strohaecker, J.F. dos Santos, Friction stir welding of precipitatehardenable aluminum alloys: a review, Weld. World 50 (2006) 78-87.
DOI: 10.1007/bf03263464
Google Scholar
[12]
R.S. Mishra, H. Sidhar, Friction Stir Welding of 2xxx Aluminum Alloys Including Al-Li Alloys, Butterworth-Heinemann Elsevier, United Kingdom, (2017).
DOI: 10.1016/b978-0-12-805368-3.00001-7
Google Scholar
[13]
N.Z. Khan, A.N. Siddiquee, Z.A. Khan, Friction Stir Welding: Dissimilar Aluminum Alloys, Taylor & Francis, 2017, pp.231-248.
DOI: 10.1201/9781315116815
Google Scholar
[14]
R.S. Mishra, P.S. De, N. Kumar, Friction Stir Welding and Processing, Springer New York, 2014, pp.112-118.
Google Scholar
[15]
R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mat. Sci. Eng. R 50 (2005) 1–78.
Google Scholar
[16]
R. Khan, M.B. Bhatty, F. Iqbal, H. Zaigham, I. Salam, Effect of welding parameters on the mechanical and micro-structural properties of friction stir welded AA-2014 joints, IOP Conf. Series: Materials Science and Engineering 146 (2016) 012055.
DOI: 10.1088/1757-899x/146/1/012055
Google Scholar
[17]
M.A. Sutton, B. Yang, A.P. Reynolds, J. Yan, Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds Part II. Mechanical characterization, Mat. Sci. Eng. A 364 (2004) 66–74.
DOI: 10.1016/s0921-5093(03)00533-1
Google Scholar
[18]
O. Hatamleh, A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints, International Journal of Fatigue 31 (2009) 974-988.
DOI: 10.1016/j.ijfatigue.2008.03.029
Google Scholar
[19]
S. Malarvizhi, V. Balasubramanian, Effect of welding processes on AA2219 aluminum alloy joint properties, Trans. Nonferrous Met. Soc. China 21(2011) 962−973.
DOI: 10.1016/s1003-6326(11)60808-x
Google Scholar
[20]
D. Gharemani, K. Farhangdoost, Influence of welding parameters on fracture toughness and fatigue crack growth rate in friction stir welded nugget of 2024-T351 aluminum alloy joints, Trans. Nonferr. Met. Soc. China 26 (2016) 2567−2585.
DOI: 10.1016/s1003-6326(16)64383-2
Google Scholar
[21]
V.R. Trummer, X. Zhang, P.E. Irving, M. Pacchione, M. Beltrao, J.F. dos Santos, Fatigue Crack Growth Behavior in Friction Stir Welded Aluminum–Lithium Alloy Subjected to Biaxial Loads, Experi. Tech. June (2016).
DOI: 10.1007/s40799-016-0091-z
Google Scholar
[22]
G. Bussu, P.E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints, Int. J. Fatig. 25 (2003) 77–88.
DOI: 10.1016/s0142-1123(02)00038-5
Google Scholar
[23]
G. Labeas, S. Peppa, Fatigue crack growth behavior of friction stir welded Aluminium alloys, Key Eng. Mats. 665 (2016) 89-92.
DOI: 10.4028/www.scientific.net/kem.665.89
Google Scholar
[24]
W. Wang, K. Qiao, J.L. Wu, T.Q. Li, J. Cai, K.S. Wang, Fatigue properties of friction stir welded joint of ultrafine-grained 2024 aluminium alloy, Sci. and Tech. of Weld and Join, online: (2016).
DOI: 10.1080/13621718.2016.1203177
Google Scholar
[25]
P.M.G.P. Moreir, P.M.S.T. de Castro, Fatigue crack growth on FSW AA2024-T3 aluminum joints, Key Eng. Mats. 498 (2012) 126-138.
DOI: 10.4028/www.scientific.net/kem.498.126
Google Scholar
[26]
Y. Ema, Z.Q. Zhao, B.Q. Liu, W.Y. Li, Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al–Li alloy joints, Mats Sci. Eng. A 569 (2013) 41-47.
DOI: 10.1016/j.msea.2013.01.044
Google Scholar
[27]
P.M.G.P. Moreira, A.M.P. de Jesus, M.A.V. de Figueiredo, M. Windisch, G. Sinnema, P.M.S.T. de Castro, Fatigue and fracture behavior of friction stir welded aluminium–lithium 2195, Theo. and App. Frac. Mech. 60 (2012) 1–9.
DOI: 10.1016/j.tafmec.2012.06.001
Google Scholar
[28]
S. Machida, O. Takao, M. Shigeru, T. Nakamur, Fatigue Crack Growth of Friction-Stir-Welded Aluminum Alloy, J. Aircraft 54 2 (2016) 1-10.
Google Scholar
[29]
Y.E. Ma, P.E. Irving, T. Fischer, X. Zhang, Effects of residual stresses on fatigue crack propagation in friction stir welded 2198-T8 and 2195-T8 Al-Li alloy joints. 12th International Conference on Fracture 2009, ICF-12. 3. 1797-1806.
DOI: 10.2514/1.c031242
Google Scholar
[30]
M.T. Milan, W.W. BoseFilho, C.O.F.T. Ruckert, J.R. Tarpani, Fatigue behavior of friction stir welded AA2024-T3 alloy: longitudinal and transverse crack growth, Fatigue Fract Engng Mater Struc. 31(2008) 526–538.
DOI: 10.1111/j.1460-2695.2008.01234.x
Google Scholar
[31]
K. Kazuya, A. Motoo, T. Okada, T. Nakamura, S. Machida, S. Fujita, Fatigue crack propagation property of friction stir welded 2024-T3 aluminum alloy, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4 - 7 May 2009, California.
DOI: 10.2514/6.2009-2619
Google Scholar
[32]
L. Fratini, S. Pasta, A.P. Reynolds, Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects, Int. J. Fati. 31 (2009) 495–500.
DOI: 10.1016/j.ijfatigue.2008.05.004
Google Scholar
[33]
L. Wang, L. Hui, S. Zhou, L. Xu, B. He, Effect of corrosive environment on fatigue property and crackpropagation behavior of Al 2024 friction stir weld, Trans. Nonferrous Met. Soc. China 26 (2016) 2830−2837.
DOI: 10.1016/s1003-6326(16)64411-4
Google Scholar
[34]
M.T. Milan, W.W. Bose Filho J.R. Tarpani, Fatigue Crack Growth Behavior of Friction Stir Welded 2024-T3 Aluminum Alloy Tested Under Accelerated Salt Fog Exposure, J. Mats. Perf. Charc. ASTM - American Society for Testing & Materials, 1-19.
DOI: 10.1520/mpc20130036
Google Scholar
[35]
P.J. Haagensen, S.J. Maddox, Recommendations on post weld improvement of steel and aluminum structures. Technical Report IIW Doc. No. XIII-1850-00, International Institute of Welding; (1999).
Google Scholar
[36]
C. Vidal, V. Infante, P. Vilaca, Assessment of Improvement Techniques Effect on Fatigue Behaviour of Friction Stir Welded Aerospace Aluminium Alloys, Proc. Eng. 2 (2010) 1605–1616.
DOI: 10.1016/j.proeng.2010.03.173
Google Scholar
[37]
A. Kredegh, A. Sedmak, A. Grbovic, N. Milosevic, D. Danicic, Numerical simulation of fatigue crack growth in friction stir welded T joint made of Al 2024 T351 alloy, Proc. Struc. Integ. 2 (2016) 365-372.
DOI: 10.1016/j.prostr.2016.06.383
Google Scholar
[38]
A. Tzamtzis, A.T. Kermanidis, Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties, Fratturaed Integrità Strutturale, 35 (2016) 396-404.
DOI: 10.3221/igf-esis.35.45
Google Scholar
[39]
M. Zadeh, A. Ali, A.F. Golestaneh, B.B. Sahari, Three dimensional simulation of fatigue crack growth in friction stir welded joints of 2024-T351 Al-alloy, J. Sci. Ind. Res. 68 (2009) 785-792.
DOI: 10.1016/j.matdes.2009.01.006
Google Scholar