Crack Repairing of Aluminum Alloy 6061 by Reinforcement of Al2O3 and B4C Particles Using Friction Stir Processing

Article Preview

Abstract:

Crack repairing of aluminum alloys is done using conventional welding techniques or mechanical methods, which results in the redundancy of mechanical properties due to defects formation. Friction Stir Welding/Processing (FSW/FSP) is a solid-state joining technique which is used to join various different similar and dissimilar metals, along with the fabrication of surface composites to cater the mentioned problem. The objective of this study is to repair the crack produced in 6061 aluminum alloy by the reinforcement of ceramic particles, Al2O3 and B4C, to further increase the efficiency of the joint along the crack line. Weld parameters, equipment used and the processing conditions are emphasized. The mechanical testing and the characterization of the weld as well as base metal was done and compared using tensile testing, micro hardness test and microstructural analysis. X-Ray Diffraction (XRD) was performed for crystallinity and intermetallic study. The dispersion of the particles was investigated using Field Emission Scanning Electron Microscope (FESEM). The crack in the Al-6061 was effectively repaired using FSP. The reinforced samples showed improved mechanical properties as compared to non-reinforced ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-247

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. M. Dehabadi, S. Ghorbanpour, and G. Azimi, Application of artificial neural network to predict Vickers microhardness of AA6061 friction stir welded sheets, J. Central South Univer. 23 (2016) 2146-2155.

DOI: 10.1007/s11771-016-3271-1

Google Scholar

[2] L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite, Comp. Sci. Tech. 67 (2007) 605-615.

DOI: 10.1016/j.compscitech.2006.07.029

Google Scholar

[3] Y. Mazaheri, F. Karimzadeh, and M. Enayati, A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing, J. Mater. Proc. Tech. 211 (2011)1614-1619.

DOI: 10.1016/j.jmatprotec.2011.04.015

Google Scholar

[4] A. Shafiei-Zarghani, S. Kashani-Bozorg, and A. Zarei-Hanzaki, Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Mater. Sci. Eng. A, 500 (2009) 84-91.

DOI: 10.1016/j.msea.2008.09.064

Google Scholar

[5] P. Cavaliere, E. Cerri, L. Marzoli, and J. Dos Santos, Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites, Appl. Comp. Mater. 11 (2004) 247-258.

DOI: 10.1023/b:acma.0000035478.71092.ec

Google Scholar

[6] W. Wang, Q.-y. Shi, P. Liu, H.-k. Li, and T. Li, A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing, J. Marer. Proc. Tech. 209 (2009) 2099-2103.

DOI: 10.1016/j.jmatprotec.2008.05.001

Google Scholar

[7] L. Marzoli, A. Strombeck, J. Dos Santos, C. Gambaro, and L. Volpone, Friction stir welding of an AA6061/Al2O3/20p reinforced alloy, Comp. Sci. Tech. 66 (2006) 363-371.

DOI: 10.1016/j.compscitech.2005.04.048

Google Scholar

[8] M. Sharifitabar, A. Sarani, S. Khorshahian, and M. S. Afarani, Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route, Mater. Des. 32 (2011) 4164-4172.

DOI: 10.1016/j.matdes.2011.04.048

Google Scholar

[9] E. Mahmoud, K. Ikeuchi, and M. Takahashi, Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing, Sci. Tech.Weld. Join. 13 (2008) 607-618.

DOI: 10.1179/136217108x333327

Google Scholar

[10] Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, Effect of friction stir processing with B 4 C particles on the microstructure and mechanical properties of 6061 aluminum alloy, Int. J. Adv, Manuf. Tech. 78 (2015) 1437-1443.

DOI: 10.1007/s00170-014-6748-9

Google Scholar

[11] J. Pickens and M. Marietta, ASM handbook, volume 2: Properties and selection: Non-ferrous alloys and special-purpose materials, ASM Handbook Committee, vol. 4, pp.207-218, (1990).

DOI: 10.31399/asm.hb.v02.9781627081627

Google Scholar

[12] M. Bahrami, N. Helmi, K. Dehghani, and M. K. B. Givi, Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: fatigue life, impact energy, tensile strength, Mater. Sci. Eng. A. 595 (2014) 173-178.

DOI: 10.1016/j.msea.2013.11.068

Google Scholar

[13] J. Zapata, J. Valderrama, E. Hoyos, and D. Lopez, Mechanical properties comparison of friction stir welding butt joints of AA1100 made in a conventional milling machine and a FSW machine, Dyna, 80 (2013) 115-123.

Google Scholar

[14] P. Cavaliere, R. Nobile, F. Panella, and A. Squillace, Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding, Int. J. Mach. Tool Manf. 46 (2006) 588-594.

DOI: 10.1016/j.ijmachtools.2005.07.010

Google Scholar

[15] K. Yang, W. Li, P. Niu, X. Yang, and Y. Xu, Cold sprayed AA2024/Al2O3 metal matrix composites improved by friction stir processing: Microstructure characterization, mechanical performance and strengthening mechanisms, J. Alloy. Comp. 736 (2018)115-123.

DOI: 10.1016/j.jallcom.2017.11.132

Google Scholar

[16] A. Pirondi and L. Collini, Analysis of crack propagation resistance of Al–Al2O3 particulate-reinforced composite friction stir welded butt joints, Int. J. Fatg. 31 (2009) 111-121.

DOI: 10.1016/j.ijfatigue.2008.05.003

Google Scholar

[17] F. Khodabakhshi, H. G. Yazdabadi, A. Kokabi, and A. Simchi, Friction stir welding of a P/M Al–Al2O3 nanocomposite: microstructure and mechanical properties, Mater. Sci. Eng. A, 585(2013) 222-232.

DOI: 10.1016/j.msea.2013.07.062

Google Scholar

[18] W. Wang, Q. Shi, P. Liu, H. Li, T. Li, A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing, J. Mater. Process. Technol. 209 (2009) 2099–2103.

DOI: 10.1016/j.jmatprotec.2008.05.001

Google Scholar

[19] C.-H. Jeon et al., Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing, Int. J. Precis. Eng. Manuf., 15 (2014) 1235–1239.

DOI: 10.1007/s12541-014-0462-2

Google Scholar

[20] Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, Effect of friction stir processing with B 4 C particles on the microstructure and mechanical properties of 6061 aluminum alloy, Int. J. Adv. Manuf. Technol., 78 (2015) 1437–1443.

DOI: 10.1007/s00170-014-6748-9

Google Scholar

[21] V. Auradi, G.L. Rajesh, S.A. Kori, Processing of B4C Particulate Reinforced 6061Aluminum Matrix Composites by Melt Stirring Involving Two-step Addition, Proc. Mater. Sci., 6 (2014) 1068–1076.

DOI: 10.1016/j.mspro.2014.07.177

Google Scholar

[22] N. Saheb, M. Shahzeb, A.S. Hakeem, Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocomposites. https://www.hindawi.com/journals/jnm/2015/609824/ (accessed Jun. 25, 2020).

DOI: 10.1155/2015/609824

Google Scholar

[23] J. Fathi, P. Ebrahimzadeh, R. Farasati, R. Teimouri, Friction stir welding of aluminum 6061-T6 in presence of watercooling: Analyzing mechanical properties and residual stress distribution, Int. J. Lightweight Mater. Manuf. 2 (2019) 107–115.

DOI: 10.1016/j.ijlmm.2019.04.007

Google Scholar