[1]
B. S. Sidhu and S. Prakash, Degradation Behavior of Ni3Al Plasma-Sprayed Boiler Tube Steels in an Energy Generation System, J. Mater. Eng. 14(3) (2005) 356-362.
DOI: 10.1361/10599490523382
Google Scholar
[2]
J.R. Davis, Handbook of Thermal Spray Technology; ASM International: Materials Park, OH, USA, (2004).
Google Scholar
[3]
J.R. T. Branco, R. Gansert, S. Sampath, C. C. Berendt and H. Herman, Mater. Res. 7 (2004) 147.
Google Scholar
[4]
F. Otsubo, H. Era, and K. Kishitake, Interface Reaction between Nickel-Base Self- Fluxing Alloy Coating and Steel Substrate, J. Therm. Spray Technol. 9 (2000) 259-263.
DOI: 10.1361/105996300770350014
Google Scholar
[5]
G.W Goward, Progress in coatings for gas turbines airfoils. Surf. Coat. Technol. 1998, 108–109, 73–79.
Google Scholar
[6]
M.Chaithanya, Processing & Characterization of Ni-Al Coating on Metal Substrates. Master's Thesis, National Institute of Technology, Rourkela, India, (2007).
Google Scholar
[7]
S.B. Mishra, K. Chandra, S. Prakash, B. Venkataraman, Characterization and erosion behaviour of a plasma sprayed Ni3Al coating on a Fe-based superalloy, Mat. Lett. 59 (2005) 3694 – 3698.
DOI: 10.1016/j.matlet.2005.06.050
Google Scholar
[8]
G. Suuthoff, Mechanical Properties of Intermetallics at High Temperatures, Vortrag ASM Materials Week, Indianapolis, (1989).
Google Scholar
[9]
W. Wang, B. Yang, L. Du, W. Zhang, Diffusion research between Ni3Al coating and titanium alloy produced by plasma spraying process, Appl. Surf. Sci. 256 (2010) 3342–3345.
DOI: 10.1016/j.apsusc.2009.12.031
Google Scholar
[10]
K. S. Kumar, C. T. Liu, Nickel and iron aluminide, J. Met.45 (1993) 28.
Google Scholar
[11]
H. M. Saffarian, Q. Gan, R. Hadkar, G.W. Warren, Corrosion behavior of binary titanium aluminides intermetallics, Corrosion, 52 (1996) 626.
DOI: 10.5006/1.3292153
Google Scholar
[12]
S. H. Kim, M. H. Oh, K. Kishida, T. Hirano, D.M. Wee, Deposition of NiAl for improvement of oxidation resistance of cold rolled Ni3Al foils, Intermetallics. 13 (2005) 129-136.
DOI: 10.1016/j.intermet.2004.06.009
Google Scholar
[13]
H. Singh, D. Puri, S. Prakash, some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy, Surf. Coat. 192 (2005) 27-38.
DOI: 10.1016/j.surfcoat.2004.03.030
Google Scholar
[14]
P.S. Liu, K.M. Liang, S.R. Gu, High temperature oxidation behavior of aluminide coatings on a cobalt base super alloy in air, Corros. Sci. 43 (2001) 1217–1226.
DOI: 10.1016/s0010-938x(00)00137-2
Google Scholar
[15]
Y. Tamarin, Protective coatings for turbine blades, ASM International, Materials Park, Ohio, USA, (2002) 56.
Google Scholar
[16]
A.U. Malik, R. Ahmad, S. Ahmad, and S. Ahmad, High Temperature oxidation behaviour of nickel aluminide coated mild steel, Prakt. Metallogr. 1992, 29, p.255.
DOI: 10.1515/pm-1992-290505
Google Scholar
[17]
K. Natesan, Critical Factors Affecting the High-Temperature Corrosion performance of iron aluminides, Mater. Sci. Eng. 1988, 30, p.53–81.
Google Scholar
[18]
S. Usmani, S. Sampath, D.L. Houck, and D. Lee, Effect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings, Tribol. Trans. 1997, 40(3), p.470–478.
DOI: 10.1080/10402009708983682
Google Scholar
[19]
K. Mehmood, M.A. Rafiq, A. N. Khan, F. Ahmed, and M. M. Rauf, Characterization and wear behavior of heat-treated Ni3AAlcoatings deposited by air plasma spraying, Mat. Sci. Performance. (2016).
DOI: 10.1007/s11665-016-2120-6
Google Scholar
[20]
L. Espinosa, V. Bonache, M.D. Salvador, Friction and wear behavior of WC-Co-Cr3C2-VC cemented carbides obtained from nanocrystalline mixtures, Wear. 272 (2011) 62– 68.
DOI: 10.1016/j.wear.2011.07.012
Google Scholar