Effect of Second Phase Particles on Solid Particles Erosion of Air Plasma Sprayed Yttria Stabilized Zirconia

Article Preview

Abstract:

Yttria stabilized zirconia (YSZ) based composite topcoats were prepared with three advanced ceramic materials as second phase component; CaZrO3, (La0.75Nd0.25)2Zr2O7 and Nd2Ce2O7. The solid particles erosion (SPE) testing of the air plasma sprayed composite topcoats was carried out at room temperature and 900 °C to study the effects of second phase on erosion behavior. The erodent was angular fused alumina of 40-45 mm size. The erosion mechanism was followed in all topcoats with cracking and fracturing of the plasma sprayed splats due to erodent particles impact and impingement, whereas micro-ploughing was observed after 900 °C SPE testing as an additional feature. The hardness and intrinsic properties of second phase component in the composite topcoats played a crucial role in improving the erosion rate (ER) at ambient as well as 900 °C. The Nd2Ce2O7/YSZ topcoat show lower ER due to combatively higher hardness of Nd2Ce2O7 and good interfacial bonding with YSZ. The overall lowering of ER at 900 °C as compared to that of at ambient conditions was ascribed to the anelastic mechanical response of the ceramic topcoats due to thermal cycling involved in the SPE testing at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-314

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.R. Loghman-Estarki, R. Shoja Razavi, H. Edris, S.R. Bakhshi, M. Nejati, and H. Jamali, Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings, Ceram Int, 2016, 42(6), pp.7432-7439.

DOI: 10.1016/j.ceramint.2016.01.147

Google Scholar

[2] M.R. Loghman-Estarki, M. Nejati, H. Edris, R. Shoja Razavi, H. Jamali, and A.H. Pakseresht, Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt, J Eur Ceram Soc, 2015, 35(2), pp.693-702.

DOI: 10.1016/j.jeurceramsoc.2014.08.029

Google Scholar

[3] X. Chen, Calcium–magnesium–alumina–silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings, Surf Coat Technol, 2006, 200(11), pp.3418-3427.

DOI: 10.1016/j.surfcoat.2004.12.029

Google Scholar

[4] A.R. Krause, H.F. Garces, G. Dwivedi, A.L. Ortiz, S. Sampath, and N.P. Padture, Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings, Acta Mater, 2016, 105, pp.355-366.

DOI: 10.1016/j.actamat.2015.12.044

Google Scholar

[5] S. Sapate, and M. Roy, Solid Particle Erosion of Thermal Sprayed Coatings, Thermal Sprayed Coatings and their Tribological Performances, IGI Global, 2015, pp.193-226.

DOI: 10.4018/978-1-4666-7489-9.ch007

Google Scholar

[6] S. Mahade, C. Ruelle, N. Curry, J. Holmberg, S. Björklund, N. Markocsan, and P. Nylén, Understanding the effect of material composition and microstructural design on the erosion behavior of plasma sprayed thermal barrier coatings, Appl Surf Sci, 2019, 488, pp.170-184.

DOI: 10.1016/j.apsusc.2019.05.245

Google Scholar

[7] G. Mauer, D. Sebold, R. Vaßen, and D. Stöver, Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics, J Therm Spray Technol, 2012, 21(3), pp.363-371.

DOI: 10.1007/s11666-011-9706-1

Google Scholar

[8] T. Haoliang, W. Changliang, G. Mengqiu, G. Junguo, C. Yongjing, W. Fuyuan, L. Erbao, and J. Guo, Erosion resistance and toughening mechanism of AlBO and BNw whiskers modified thermal barrier coatings, Ceram Int, 2020, 46(4), pp.4573-4580.

DOI: 10.1016/j.ceramint.2019.10.186

Google Scholar

[9] R.Ghasemi, and H.Vakilifard, Plasma-sprayed nanostructured YSZ thermal barrier coatings: thermal insulation capability and adhesion strength, Ceram Int, 2017, 43(12), pp.8556-8563.

DOI: 10.1016/j.ceramint.2017.03.074

Google Scholar

[10] M.K. Keshavarz, S. Turenne, and A. Bonakdar, Solidification behavior of inconel 713LC gas turbine blades during electron beam welding, J. Manuf. Process., 2018, 31(pp.232-239.

DOI: 10.1016/j.jmapro.2017.11.021

Google Scholar

[11] A.J. Slifka, B.J. Filla, J.M. Phelps, G. Bancke, and C.C. Berndt, Thermal conductivity of a zirconia thermal barrier coating, J Therm Spray Technol, 1998, 7(1), pp.43-46, in English.

DOI: 10.1007/s11666-006-5001-y

Google Scholar

[12] C.R.C. Lima, and R. da Exaltacaão Trevisan, Temperature measurements and adhesion properties of plasma sprayed thermal barrier coatings, J Therm Spray Technol, 1999, 8(2), pp.323-327, in English.

DOI: 10.1361/105996399770350548

Google Scholar

[13] J. Kaspar, and O. Ambroz, Plasma spray coatings as thermal barriers based on zirconium oxide with yttrium oxide, The 1st Plasma-Technik-Symposium, Eschnauer H, H. P, N.A. R and S. S Eds., 1988, p.155–166.

Google Scholar

[14] R. Vaßen, F. Tietz, G. Kerkhoff, and D. Stöver, New materials for advanced thermal barrier coatings, Proceedings of the 6th Liége Conference on Materials for Advanced Power Engineering, J. Lecomte-Beckers, F. Schuber and P.J. Ennis Eds., 1998 (City), [insert publication year], p.1627–1635.

Google Scholar

[15] J. Thornton, and A. Majumdar, Precipitation and phase stability in zirconia based thermal barrier coatings, Proceedings of the 14th International Thermal Spray Conference: Thermal Spray – Current Status and Future Trends, A. Ohmori Ed., 1995 (City), ASM International, Materials Park, OH, [insert publication year], p.1075–1080.

DOI: 10.31399/asm.cp.itsc1997p0315

Google Scholar

[16] M.P. Schmitt, A.K. Rai, D. Zhu, M.R. Dorfman, and D.E. Wolfe, Thermal conductivity and erosion durability of composite two-phase air plasma sprayed thermal barrier coatings, Surf Coat Technol, 2015, 279(pp.44-52.

DOI: 10.1016/j.surfcoat.2015.08.010

Google Scholar

[17] Z.-G. Liu, W.-H. Zhang, J.-H. Ouyang, and Y. Zhou, Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying, J Alloys Compd, 2015, 647(pp.438-444.

DOI: 10.1016/j.jallcom.2015.05.189

Google Scholar

[18] X. Wang, L. Guo, H. Zhang, S. Gong, and H. Guo, Structural evolution and thermal conductivities of (Gd1−xYbx)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings, Ceram Int, 2015, 41(10, Part A), pp.12621-12625.

DOI: 10.1016/j.ceramint.2015.06.090

Google Scholar

[19] N. Schlegel, D. Sebold, Y.J. Sohn, G. Mauer, and R. Vaßen, Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test, J Therm Spray Technol, 2015, 24(7), pp.1205-1212, in English.

DOI: 10.1007/s11666-015-0254-y

Google Scholar

[20] M. Li, L. Guo, and F. Ye, Phase structure and thermal conductivities of Er2O3 stabilized ZrO2 toughened Gd2Zr2O7 ceramics for thermal barrier coatings, Ceram Int, 2016, 42(15), pp.16584-16588.

DOI: 10.1016/j.ceramint.2016.07.079

Google Scholar

[21] T. Liu, X. Chen, G.-J. Yang, and C.-J. Li, Properties evolution of plasma-sprayed La2Zr2O7 coating induced by pore structure evolution during thermal exposure, Ceram Int, 2016, 42(14), pp.15485-15492.

DOI: 10.1016/j.ceramint.2016.06.201

Google Scholar

[22] S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue, J Alloys Compd, 2016, 689, pp.1011-1019.

DOI: 10.1016/j.jallcom.2016.07.333

Google Scholar

[23] B. Paul, K. Singh, T. Jaroń, A. Roy, and A. Chowdhury, Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: The role of oxygen to induce local disordered states, J Alloys Compd, 2016, 686, pp.130-136.

DOI: 10.1016/j.jallcom.2016.05.347

Google Scholar

[24] Z. Xiaofeng, C. Xiangzhong, X. Min, B. Jinxiao, S. Xiwen, and A. Shengli, Evolution of microstructure and cyclic life of La2(Ce0.3Zr0.7)2O7-3 wt.%Y2O3 coatings, Surf Coat Technol, 2016, 307,Part A, pp.951-956.

DOI: 10.1016/j.surfcoat.2016.10.027

Google Scholar

[25] C. Xiaoge, T. An, Z. Hongsong, L. Yanxu, Z. Haoming, and Z. Yongde, Thermal conductivity and expansion coefficient of Ln2LaTaO7 (Ln=Er and Yb) oxides for thermal barrier coating applications, Ceram Int, 2016, 42(12), pp.13491-13496.

DOI: 10.1016/j.ceramint.2016.05.141

Google Scholar

[26] D. Zhang, Z. Zhao, B. Wang, S. Li, and J. Zhang, Investigation of a new type of composite ceramics for thermal barrier coatings, Mater Design, 2016, 112, pp.27-33.

DOI: 10.1016/j.matdes.2016.09.050

Google Scholar

[27] H.f. Liu, X. Xiong, X.b. Li, and Y.l. Wang, Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4+V2O5 molten salt, Corros Sci, 2014, 85, pp.87-93.

DOI: 10.1016/j.corsci.2014.04.001

Google Scholar

[28] N. Ejaz, L. Ali, A. Ahmad, M. Mansoor, M.M. Asim, A. Rauf, and K. Mehmood, Thermo-Physical Properties Measurement of Advanced TBC Materials with Pyrochlore and Perovskite Structures, Key Eng Mater, 2018, 778, pp.236-244.

DOI: 10.4028/www.scientific.net/kem.778.236

Google Scholar

[29] G. Di Girolamo, F. Marra, M. Schioppa, C. Blasi, G. Pulci, and T. Valente, Evolution of microstructural and mechanical properties of lanthanum zirconate thermal barrier coatings at high temperature, Surf Coat Technol, 2015, 268, pp.298-302.

DOI: 10.1016/j.surfcoat.2014.07.067

Google Scholar

[30] G. Di Girolamo, C. Blasi, A. Brentari, and M. Schioppa, Microstructural, mechanical and thermal characteristics of zirconia-based thermal barrier coatings deposited by plasma spraying, Ceram Int, 2015, 41(9), pp.11776-11785.

DOI: 10.1016/j.ceramint.2015.05.145

Google Scholar

[31] H. Chen, Y. Gao, S. Tao, Y. Liu, and H. Luo, Thermophysical properties of lanthanum zirconate coating prepared by plasma spraying and the influence of post-annealing, J Alloys Compd, 2009, 486(1), pp.391-399.

DOI: 10.1016/j.jallcom.2009.06.162

Google Scholar

[32] C.U. Hardwicke, and Y.-C. Lau, Advances in thermal spray coatings for gas turbines and energy generation: a review, J Therm Spray Technol, 2013, 22(5), pp.564-576.

DOI: 10.1007/s11666-013-9904-0

Google Scholar

[33] C.-J. Li, G.-J. Yang, and C.-X. Li, Development of particle interface bonding in thermal spray coatings: a review, J Therm Spray Technol, 2013, 22(2-3), pp.192-206.

DOI: 10.1007/s11666-012-9864-9

Google Scholar

[34] R. McPherson, A review of microstructure and properties of plasma sprayed ceramic coatings, Surf Coat Technol, 1989, 39, pp.173-181.

DOI: 10.1016/0257-8972(89)90052-2

Google Scholar

[35] N. Ejaz, L. Ali, A. Ahmed, A. Rafiq, G.H. Awan, and K. Mehmood, Sulfate‐vanadate hot corrosion of neodymium cerate/yttria stabilized zirconia composite coating, Int. J. Appl. Ceram. Technol., 2019, 16, p.931–942.

DOI: 10.1111/ijac.13143

Google Scholar

[36] N. Ejaz, L. Ali, F. Ahmed, K.M. Ghauri, and A.N. Khan, Hot Corrosion Behavior of YSZ and CaZrO3/YSZ Composite Thermal Barrier Coatings in Contact with 50V2O5 + 50Na2SO4 Salts, J Therm Spray Technol, 2017, pp.1-16.

DOI: 10.1007/s11666-017-0568-z

Google Scholar

[37] N. Ejaz, L. Ali, F. Ahmed, G.H. Awan, K.M. Ghauri, and A. Nusair, Hot corrosion behavior of double ceramic layered CaZrO3/Yttria stabilized zirconia (YSZ) coatings, Int. J. Appl. Ceram. Technol., 2018, 15), pp.53-62.

DOI: 10.1111/ijac.12767

Google Scholar

[38] A.V. Levy, and W. Buqian, Erosion of hard material coating systems, Wear, 1988, 121(3), pp.325-346.

DOI: 10.1016/0043-1648(88)90209-8

Google Scholar

[39] B. Wang, Erosion-corrosion of thermal sprayed coatings in FBC boilers, Wear, 1996, 199(1), pp.24-32.

DOI: 10.1016/0043-1648(96)06972-4

Google Scholar

[40] S. Lathabai, M. Ottmüller, and I. Fernandez, Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings, Wear, 1998, 221(2), pp.93-108.

DOI: 10.1016/s0043-1648(98)00267-1

Google Scholar

[41] A. Standard, G76-95, Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets, American Society for Testing and Materials, (2000).

DOI: 10.1520/g0076-04

Google Scholar

[42] F. Kroupa, Nonlinear behavior in compression and tension of thermally sprayed ceramic coatings, J Therm Spray Technol, 2007, 16(1), pp.84-95.

DOI: 10.1007/s11666-006-9009-0

Google Scholar

[43] N. Krishnamurthy, M. Murali, B. Venkataraman, and P. Mukunda, Characterization and solid particle erosion behavior of plasma sprayed alumina and calcia-stabilized zirconia coatings on Al-6061 substrate, Wear, 2012, 274, pp.15-27.

DOI: 10.1016/j.wear.2011.08.003

Google Scholar

[44] J. Zhang, X. Guo, Y. Zhang, Z. Lu, H.-H. Choi, Y.-G. Jung, and I.-S. Kim, Mechanical properties of lanthanum zirconate-based composite thermal barrier coatings, Adv. App. Ceram., 2019, 118(5), pp.257-263.

DOI: 10.1080/17436753.2018.1564415

Google Scholar

[45] E. Bousser, L. Martinu, and J.E. Klemberg-Sapieha, Solid particle erosion mechanisms of hard protective coatings, Surf Coat Technol, 2013, 235, pp.383-393.

DOI: 10.1016/j.surfcoat.2013.07.050

Google Scholar

[46] K. Yang, M. Liu, K. Zhou, and C. Deng, Recent developments in the research of splat formation process in thermal spraying, J. Mater., 2012, (2013).

Google Scholar

[47] X. Chen, M.Y. He, I. Spitsberg, N.A. Fleck, J.W. Hutchinson, and A.G. Evans, Mechanisms governing the high temperature erosion of thermal barrier coatings, Wear, 2004, 256(7), pp.735-746.

DOI: 10.1016/s0043-1648(03)00446-0

Google Scholar

[48] S. Guo, and Y. Kagawa, Young's moduli of zirconia top-coat and thermally grown oxide in a plasma-sprayed thermal barrier coating system, Scripta Mater, 2004, 50(11), pp.1401-1406.

DOI: 10.1016/j.scriptamat.2004.02.025

Google Scholar

[49] I. Sevostianov, and M. Kachanov, Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations, Mater. Sc. Eng.: A, 2001, 297(1-2), pp.235-243.

DOI: 10.1016/s0921-5093(00)01022-4

Google Scholar

[50] Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-linear elastic properties of plasma-sprayed zirconia coatings and associated relationships with processing conditions, Acta Mater, 2007, 55(14), pp.4667-4678.

DOI: 10.1016/j.actamat.2007.04.037

Google Scholar

[51] Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma Sprayed Zirconia Coatings, J Am Ceram Soc, 2008, 91(12), pp.4036-4043.

DOI: 10.1111/j.1551-2916.2008.02789.x

Google Scholar

[52] T. Nakamura, and Y. Liu, Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis, Int. J. of Solids & Struct., 2007, 44(6), pp.1990-2009.

DOI: 10.1016/j.ijsolstr.2006.08.012

Google Scholar