[1]
M.R. Loghman-Estarki, R. Shoja Razavi, H. Edris, S.R. Bakhshi, M. Nejati, and H. Jamali, Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings, Ceram Int, 2016, 42(6), pp.7432-7439.
DOI: 10.1016/j.ceramint.2016.01.147
Google Scholar
[2]
M.R. Loghman-Estarki, M. Nejati, H. Edris, R. Shoja Razavi, H. Jamali, and A.H. Pakseresht, Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt, J Eur Ceram Soc, 2015, 35(2), pp.693-702.
DOI: 10.1016/j.jeurceramsoc.2014.08.029
Google Scholar
[3]
X. Chen, Calcium–magnesium–alumina–silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings, Surf Coat Technol, 2006, 200(11), pp.3418-3427.
DOI: 10.1016/j.surfcoat.2004.12.029
Google Scholar
[4]
A.R. Krause, H.F. Garces, G. Dwivedi, A.L. Ortiz, S. Sampath, and N.P. Padture, Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings, Acta Mater, 2016, 105, pp.355-366.
DOI: 10.1016/j.actamat.2015.12.044
Google Scholar
[5]
S. Sapate, and M. Roy, Solid Particle Erosion of Thermal Sprayed Coatings, Thermal Sprayed Coatings and their Tribological Performances, IGI Global, 2015, pp.193-226.
DOI: 10.4018/978-1-4666-7489-9.ch007
Google Scholar
[6]
S. Mahade, C. Ruelle, N. Curry, J. Holmberg, S. Björklund, N. Markocsan, and P. Nylén, Understanding the effect of material composition and microstructural design on the erosion behavior of plasma sprayed thermal barrier coatings, Appl Surf Sci, 2019, 488, pp.170-184.
DOI: 10.1016/j.apsusc.2019.05.245
Google Scholar
[7]
G. Mauer, D. Sebold, R. Vaßen, and D. Stöver, Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics, J Therm Spray Technol, 2012, 21(3), pp.363-371.
DOI: 10.1007/s11666-011-9706-1
Google Scholar
[8]
T. Haoliang, W. Changliang, G. Mengqiu, G. Junguo, C. Yongjing, W. Fuyuan, L. Erbao, and J. Guo, Erosion resistance and toughening mechanism of AlBO and BNw whiskers modified thermal barrier coatings, Ceram Int, 2020, 46(4), pp.4573-4580.
DOI: 10.1016/j.ceramint.2019.10.186
Google Scholar
[9]
R.Ghasemi, and H.Vakilifard, Plasma-sprayed nanostructured YSZ thermal barrier coatings: thermal insulation capability and adhesion strength, Ceram Int, 2017, 43(12), pp.8556-8563.
DOI: 10.1016/j.ceramint.2017.03.074
Google Scholar
[10]
M.K. Keshavarz, S. Turenne, and A. Bonakdar, Solidification behavior of inconel 713LC gas turbine blades during electron beam welding, J. Manuf. Process., 2018, 31(pp.232-239.
DOI: 10.1016/j.jmapro.2017.11.021
Google Scholar
[11]
A.J. Slifka, B.J. Filla, J.M. Phelps, G. Bancke, and C.C. Berndt, Thermal conductivity of a zirconia thermal barrier coating, J Therm Spray Technol, 1998, 7(1), pp.43-46, in English.
DOI: 10.1007/s11666-006-5001-y
Google Scholar
[12]
C.R.C. Lima, and R. da Exaltacaão Trevisan, Temperature measurements and adhesion properties of plasma sprayed thermal barrier coatings, J Therm Spray Technol, 1999, 8(2), pp.323-327, in English.
DOI: 10.1361/105996399770350548
Google Scholar
[13]
J. Kaspar, and O. Ambroz, Plasma spray coatings as thermal barriers based on zirconium oxide with yttrium oxide, The 1st Plasma-Technik-Symposium, Eschnauer H, H. P, N.A. R and S. S Eds., 1988, p.155–166.
Google Scholar
[14]
R. Vaßen, F. Tietz, G. Kerkhoff, and D. Stöver, New materials for advanced thermal barrier coatings, Proceedings of the 6th Liége Conference on Materials for Advanced Power Engineering, J. Lecomte-Beckers, F. Schuber and P.J. Ennis Eds., 1998 (City), [insert publication year], p.1627–1635.
Google Scholar
[15]
J. Thornton, and A. Majumdar, Precipitation and phase stability in zirconia based thermal barrier coatings, Proceedings of the 14th International Thermal Spray Conference: Thermal Spray – Current Status and Future Trends, A. Ohmori Ed., 1995 (City), ASM International, Materials Park, OH, [insert publication year], p.1075–1080.
DOI: 10.31399/asm.cp.itsc1997p0315
Google Scholar
[16]
M.P. Schmitt, A.K. Rai, D. Zhu, M.R. Dorfman, and D.E. Wolfe, Thermal conductivity and erosion durability of composite two-phase air plasma sprayed thermal barrier coatings, Surf Coat Technol, 2015, 279(pp.44-52.
DOI: 10.1016/j.surfcoat.2015.08.010
Google Scholar
[17]
Z.-G. Liu, W.-H. Zhang, J.-H. Ouyang, and Y. Zhou, Novel thermal barrier coatings based on rare-earth zirconates/YSZ double-ceramic-layer system deposited by plasma spraying, J Alloys Compd, 2015, 647(pp.438-444.
DOI: 10.1016/j.jallcom.2015.05.189
Google Scholar
[18]
X. Wang, L. Guo, H. Zhang, S. Gong, and H. Guo, Structural evolution and thermal conductivities of (Gd1−xYbx)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings, Ceram Int, 2015, 41(10, Part A), pp.12621-12625.
DOI: 10.1016/j.ceramint.2015.06.090
Google Scholar
[19]
N. Schlegel, D. Sebold, Y.J. Sohn, G. Mauer, and R. Vaßen, Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test, J Therm Spray Technol, 2015, 24(7), pp.1205-1212, in English.
DOI: 10.1007/s11666-015-0254-y
Google Scholar
[20]
M. Li, L. Guo, and F. Ye, Phase structure and thermal conductivities of Er2O3 stabilized ZrO2 toughened Gd2Zr2O7 ceramics for thermal barrier coatings, Ceram Int, 2016, 42(15), pp.16584-16588.
DOI: 10.1016/j.ceramint.2016.07.079
Google Scholar
[21]
T. Liu, X. Chen, G.-J. Yang, and C.-J. Li, Properties evolution of plasma-sprayed La2Zr2O7 coating induced by pore structure evolution during thermal exposure, Ceram Int, 2016, 42(14), pp.15485-15492.
DOI: 10.1016/j.ceramint.2016.06.201
Google Scholar
[22]
S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Failure analysis of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue, J Alloys Compd, 2016, 689, pp.1011-1019.
DOI: 10.1016/j.jallcom.2016.07.333
Google Scholar
[23]
B. Paul, K. Singh, T. Jaroń, A. Roy, and A. Chowdhury, Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: The role of oxygen to induce local disordered states, J Alloys Compd, 2016, 686, pp.130-136.
DOI: 10.1016/j.jallcom.2016.05.347
Google Scholar
[24]
Z. Xiaofeng, C. Xiangzhong, X. Min, B. Jinxiao, S. Xiwen, and A. Shengli, Evolution of microstructure and cyclic life of La2(Ce0.3Zr0.7)2O7-3 wt.%Y2O3 coatings, Surf Coat Technol, 2016, 307,Part A, pp.951-956.
DOI: 10.1016/j.surfcoat.2016.10.027
Google Scholar
[25]
C. Xiaoge, T. An, Z. Hongsong, L. Yanxu, Z. Haoming, and Z. Yongde, Thermal conductivity and expansion coefficient of Ln2LaTaO7 (Ln=Er and Yb) oxides for thermal barrier coating applications, Ceram Int, 2016, 42(12), pp.13491-13496.
DOI: 10.1016/j.ceramint.2016.05.141
Google Scholar
[26]
D. Zhang, Z. Zhao, B. Wang, S. Li, and J. Zhang, Investigation of a new type of composite ceramics for thermal barrier coatings, Mater Design, 2016, 112, pp.27-33.
DOI: 10.1016/j.matdes.2016.09.050
Google Scholar
[27]
H.f. Liu, X. Xiong, X.b. Li, and Y.l. Wang, Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4+V2O5 molten salt, Corros Sci, 2014, 85, pp.87-93.
DOI: 10.1016/j.corsci.2014.04.001
Google Scholar
[28]
N. Ejaz, L. Ali, A. Ahmad, M. Mansoor, M.M. Asim, A. Rauf, and K. Mehmood, Thermo-Physical Properties Measurement of Advanced TBC Materials with Pyrochlore and Perovskite Structures, Key Eng Mater, 2018, 778, pp.236-244.
DOI: 10.4028/www.scientific.net/kem.778.236
Google Scholar
[29]
G. Di Girolamo, F. Marra, M. Schioppa, C. Blasi, G. Pulci, and T. Valente, Evolution of microstructural and mechanical properties of lanthanum zirconate thermal barrier coatings at high temperature, Surf Coat Technol, 2015, 268, pp.298-302.
DOI: 10.1016/j.surfcoat.2014.07.067
Google Scholar
[30]
G. Di Girolamo, C. Blasi, A. Brentari, and M. Schioppa, Microstructural, mechanical and thermal characteristics of zirconia-based thermal barrier coatings deposited by plasma spraying, Ceram Int, 2015, 41(9), pp.11776-11785.
DOI: 10.1016/j.ceramint.2015.05.145
Google Scholar
[31]
H. Chen, Y. Gao, S. Tao, Y. Liu, and H. Luo, Thermophysical properties of lanthanum zirconate coating prepared by plasma spraying and the influence of post-annealing, J Alloys Compd, 2009, 486(1), pp.391-399.
DOI: 10.1016/j.jallcom.2009.06.162
Google Scholar
[32]
C.U. Hardwicke, and Y.-C. Lau, Advances in thermal spray coatings for gas turbines and energy generation: a review, J Therm Spray Technol, 2013, 22(5), pp.564-576.
DOI: 10.1007/s11666-013-9904-0
Google Scholar
[33]
C.-J. Li, G.-J. Yang, and C.-X. Li, Development of particle interface bonding in thermal spray coatings: a review, J Therm Spray Technol, 2013, 22(2-3), pp.192-206.
DOI: 10.1007/s11666-012-9864-9
Google Scholar
[34]
R. McPherson, A review of microstructure and properties of plasma sprayed ceramic coatings, Surf Coat Technol, 1989, 39, pp.173-181.
DOI: 10.1016/0257-8972(89)90052-2
Google Scholar
[35]
N. Ejaz, L. Ali, A. Ahmed, A. Rafiq, G.H. Awan, and K. Mehmood, Sulfate‐vanadate hot corrosion of neodymium cerate/yttria stabilized zirconia composite coating, Int. J. Appl. Ceram. Technol., 2019, 16, p.931–942.
DOI: 10.1111/ijac.13143
Google Scholar
[36]
N. Ejaz, L. Ali, F. Ahmed, K.M. Ghauri, and A.N. Khan, Hot Corrosion Behavior of YSZ and CaZrO3/YSZ Composite Thermal Barrier Coatings in Contact with 50V2O5 + 50Na2SO4 Salts, J Therm Spray Technol, 2017, pp.1-16.
DOI: 10.1007/s11666-017-0568-z
Google Scholar
[37]
N. Ejaz, L. Ali, F. Ahmed, G.H. Awan, K.M. Ghauri, and A. Nusair, Hot corrosion behavior of double ceramic layered CaZrO3/Yttria stabilized zirconia (YSZ) coatings, Int. J. Appl. Ceram. Technol., 2018, 15), pp.53-62.
DOI: 10.1111/ijac.12767
Google Scholar
[38]
A.V. Levy, and W. Buqian, Erosion of hard material coating systems, Wear, 1988, 121(3), pp.325-346.
DOI: 10.1016/0043-1648(88)90209-8
Google Scholar
[39]
B. Wang, Erosion-corrosion of thermal sprayed coatings in FBC boilers, Wear, 1996, 199(1), pp.24-32.
DOI: 10.1016/0043-1648(96)06972-4
Google Scholar
[40]
S. Lathabai, M. Ottmüller, and I. Fernandez, Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings, Wear, 1998, 221(2), pp.93-108.
DOI: 10.1016/s0043-1648(98)00267-1
Google Scholar
[41]
A. Standard, G76-95, Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets, American Society for Testing and Materials, (2000).
DOI: 10.1520/g0076-04
Google Scholar
[42]
F. Kroupa, Nonlinear behavior in compression and tension of thermally sprayed ceramic coatings, J Therm Spray Technol, 2007, 16(1), pp.84-95.
DOI: 10.1007/s11666-006-9009-0
Google Scholar
[43]
N. Krishnamurthy, M. Murali, B. Venkataraman, and P. Mukunda, Characterization and solid particle erosion behavior of plasma sprayed alumina and calcia-stabilized zirconia coatings on Al-6061 substrate, Wear, 2012, 274, pp.15-27.
DOI: 10.1016/j.wear.2011.08.003
Google Scholar
[44]
J. Zhang, X. Guo, Y. Zhang, Z. Lu, H.-H. Choi, Y.-G. Jung, and I.-S. Kim, Mechanical properties of lanthanum zirconate-based composite thermal barrier coatings, Adv. App. Ceram., 2019, 118(5), pp.257-263.
DOI: 10.1080/17436753.2018.1564415
Google Scholar
[45]
E. Bousser, L. Martinu, and J.E. Klemberg-Sapieha, Solid particle erosion mechanisms of hard protective coatings, Surf Coat Technol, 2013, 235, pp.383-393.
DOI: 10.1016/j.surfcoat.2013.07.050
Google Scholar
[46]
K. Yang, M. Liu, K. Zhou, and C. Deng, Recent developments in the research of splat formation process in thermal spraying, J. Mater., 2012, (2013).
Google Scholar
[47]
X. Chen, M.Y. He, I. Spitsberg, N.A. Fleck, J.W. Hutchinson, and A.G. Evans, Mechanisms governing the high temperature erosion of thermal barrier coatings, Wear, 2004, 256(7), pp.735-746.
DOI: 10.1016/s0043-1648(03)00446-0
Google Scholar
[48]
S. Guo, and Y. Kagawa, Young's moduli of zirconia top-coat and thermally grown oxide in a plasma-sprayed thermal barrier coating system, Scripta Mater, 2004, 50(11), pp.1401-1406.
DOI: 10.1016/j.scriptamat.2004.02.025
Google Scholar
[49]
I. Sevostianov, and M. Kachanov, Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations, Mater. Sc. Eng.: A, 2001, 297(1-2), pp.235-243.
DOI: 10.1016/s0921-5093(00)01022-4
Google Scholar
[50]
Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-linear elastic properties of plasma-sprayed zirconia coatings and associated relationships with processing conditions, Acta Mater, 2007, 55(14), pp.4667-4678.
DOI: 10.1016/j.actamat.2007.04.037
Google Scholar
[51]
Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma Sprayed Zirconia Coatings, J Am Ceram Soc, 2008, 91(12), pp.4036-4043.
DOI: 10.1111/j.1551-2916.2008.02789.x
Google Scholar
[52]
T. Nakamura, and Y. Liu, Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis, Int. J. of Solids & Struct., 2007, 44(6), pp.1990-2009.
DOI: 10.1016/j.ijsolstr.2006.08.012
Google Scholar