Optimization of Pulsed Fiber Laser Texturing for Solid Lubricant Deposition on a Ti/TiN Coated Aerospace Alloy

Article Preview

Abstract:

AA2219 is a superior performance Al-base alloy which promises toughness, strength and creep resistance which allows the deposition of titanium nitride (TiN) coating at 200 °C. The present research addresses the issue of poor wear properties of the alloy, using state of the art technologies, to deposit hard and adherent thin TiN layer followed by laser surface texturing. The thickness of sub-micron size coating is determined by appropriate modification of the existing mathematical model and composite microhardness values. Laser energy density of 20.8 J/cm2 and 4 repeated pulses is optimized to produce regular size and shape of micro-holes on TiN-coated samples. Epoxy-based MoS2 lubricant is deposited on laser textured samples to produce ultra-low friction surfaces. The micro-holes act as a micro-reservoir of MoS2 solid lubricant. Field emission scanning electron microscope and optical profilometer were used to estimate the topology, shape, size, and depth of micro-holes. The cross-sectional view shows the successful impregnation of epoxy-based MoS2 due to the chemisorption of functional groups with an Al oxide surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-345

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. S. N. Murty, A. Sarkar, P.R. Narayanan, P.V. Venkitakrishnan, J. Mukhopadhyay, Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219, Mater. Sci. Eng. A 677 (2016) 41–49.

DOI: 10.1016/j.msea.2016.09.027

Google Scholar

[2] J. Zhang, B. Chen, Z. Baoxiang, Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy, Mater. Des. 34 (2012) 15–21.

DOI: 10.1016/j.matdes.2011.07.061

Google Scholar

[3] F. Zhou, C.-M.Suh, S.-S. Kim, R. Murakami, Sliding-wear behavior of TiN- and CrN-coated 2024 aluminum alloy against an Al2O3 ball, Tribol. Lett. 13(2002) 173–178.

Google Scholar

[4] M. I. Bashir et al., Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding, Surf. Coat. Technol. 327 (2017) 59–65.

DOI: 10.1016/j.surfcoat.2017.08.015

Google Scholar

[5] S. Gredelj, S. Kumar, A.R. Gerson, G. P. Cavallaro, Radio frequency plasma nitriding of aluminium at higher power levels, Thin Solid Films 515(2006) 1480–1485.

DOI: 10.1016/j.tsf.2006.04.031

Google Scholar

[6] A. Yazdani, A. Zakeri, An insight into formation of nanostructured coatings on metallic substrates by planetary ball milling, Powd. Technol. 278(2015) 196–203.

DOI: 10.1016/j.powtec.2015.03.026

Google Scholar

[7] C. Liu, A. Leyland, Q. Bi, A. Matthews, Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings, Surf. Coat. Technol. 141(2001) 164–173.

DOI: 10.1016/s0257-8972(01)01267-1

Google Scholar

[8] A. Wilson, A. Matthews, J. Housden, R. Turner, B. Garside,A comparison of the wear and fatigue properties of plasma-assisted physicalvapour deposition TiN, CrN and duplex coatings on Ti-6Al-4V,Surf. Coat. Technol. 62(1993)600–607.

DOI: 10.1016/0257-8972(93)90306-9

Google Scholar

[9] M. I. Bashir et al., Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding, Surf. Coat. Technol. 327(2017)59–65.

DOI: 10.1016/j.surfcoat.2017.08.015

Google Scholar

[10] S. MishraV. Yadava, Laser Beam Micro Machining (LBMM) – A review, Opt. Lasers Eng.73(2015) 89–122.

Google Scholar

[11] T. Hu, L. Hu, Q. Ding, Effective solution for the tribological problems of Ti-6Al-4V: Combination of laser surface texturing and solid lubricant film, Surf. Coat. Technol. 206(2012) 5060–5066.

DOI: 10.1016/j.surfcoat.2012.06.014

Google Scholar

[12] L. Rapoport et al., Friction and wear of MoS2 films on laser textured steel surfaces, Surf. Coat. Technol. 202(2008) 3332–3340.

DOI: 10.1016/j.surfcoat.2007.12.009

Google Scholar

[13] M.P. AnanthR. Ramesh,Sliding wear characteristics of solid lubricant coating on titanium alloy surface modified by laser texturing and ternary hard coatings,Trans. Nonferrous Met. Soc. China 27 (2017) 839–847.

DOI: 10.1016/s1003-6326(17)60096-7

Google Scholar

[14] G.D. Gautam, A.K. Pandey, Pulsed Nd:YAG laser beam drilling: A review, Opt. Laser Technol. 100 (2018) 183–215.

DOI: 10.1016/j.optlastec.2017.09.054

Google Scholar

[15] N. Mohan, C.R. Mahesha, B.M. Rajaprakash, Erosive Wear Behaviour of WC Filled Glass Epoxy Composites, Procedia Eng. 68 (2013) 694–702.

DOI: 10.1016/j.proeng.2013.12.241

Google Scholar

[16] B. JönssonS. Hogmark, Hardness measurements of thin films, Thin Solid Films 114 (1984) 257–269.

DOI: 10.1016/0040-6090(84)90123-8

Google Scholar

[17] W. SteenJ. Mazumder, Laser Material Processing, 4th ed. London: Springer-Verlag, (2010).

Google Scholar

[18] T.V. Kononenko et al., Laser ablation and micropatterning of thin TiN coatings, Appl. Phys. A71 (2000) 627–631.

Google Scholar

[19] N. Morshedian,Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethyl methacrylate (PMMA), Plasma Sci. Technol. 19 (2017) 095501.

DOI: 10.1088/2058-6272/aa74c5

Google Scholar

[20] J. van den Brand, S. Van Gils, P.C. J. Beentjes, H. Terryn, V. Sivel, J.H. W. de Wit,Improving the adhesion between epoxy coatings and aluminum substrates, Prog. Org. Coat. 51 (2004) 339–350.

DOI: 10.1016/j.porgcoat.2004.08.005

Google Scholar