Microstructural Evolution upon 10-wt% Mo Alloying and Laser Surface Melting of M2 High Speed Steels Hardfacings

Article Preview

Abstract:

The article aims to comprehend the microstructural changes, in Plasma Transfer Arc (PTA) deposited M2 high speed steel (HSS) hardfacings upon incorporation of 10 wt% Mo alloying during deposition followed by laser surface melting. PTA deposited hardfacings were produced over 4140 steel. Then Mo alloyed and unalloyed PTA deposits were subjected to laser surface melting (LSM) process. A comprehensive microstructural characterization for all the resultant structures was carried out. Optical metallography using appropriate etching reagents and SEM microscopy in conjunction with XRD techniques were employed to ascertain the matrix structure and carbides morphology. The PTA microstructure was close to equilibrium structure of M2 HSS containing mixture of ferrite/austenite/martensite along with MC, M2C and M6C type carbides. While the LSM of M2 HSS caused higher fraction of martensite and finer grains in the structure resulting in increment in hardness. 10-wt% Mo addition changes the carbides from MC and rod like M2C to fibrous M2C and fishbone like M6C carbides. The LSM of Mo alloyed M2 HSS PTA deposits led to an overall decrease in the fraction of M6C carbides and fibrous M2C carbides accompanied by a decrease in hardness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

346-356

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.F. Mendez, N. Barnes, K. Bell, S.D. Borle, S.S. Gajapathi, S.D. Guest, H. Izadi, A.K. Gol, G. Wood, Welding processes for wear resistant overlays, J. Manuf. Process. 16 (2014) 4–25.

DOI: 10.1016/j.jmapro.2013.06.011

Google Scholar

[2] N. Yuksel, S. Sahin, Wear behavior-hardness-microstructure relation of Fe-Cr-C and Fe-Cr-C-B based hardfacing alloys, Mater. Des. 58 (2014) 491–498.

DOI: 10.1016/j.matdes.2014.02.032

Google Scholar

[3] Z.L. Xinke Deng, Guojun Zhang, Tao Wang, Shuai Ren, Qian Cao, Zhonglian Bai, Microstructure and wear resistance of Mo coating deposited by plasma transferred arc process, Mater. Charact. 131 (2017) 517–525.

DOI: 10.1016/j.matchar.2017.07.044

Google Scholar

[4] S. A. A. Dilawary, A. Motallebzadeh, M. Afzal, Erdem Atar, Huseyin Cimenoglu, Nanotribological characteristics of laser surface melted Stellite 12 1 Mo hardfacing, Ind. Lubr. Tribol. (2018).

DOI: 10.1108/ilt-05-2018-0175

Google Scholar

[5] S. A. A. Dilawary, A. Motallebzadeh, E. Atar, H. Cimenoglu, Influence of Mo on the high temperature wear performance of NiCrBSi hardfacings, Tribiology Int. 127 (2018) 288–295.

DOI: 10.1016/j.triboint.2018.06.022

Google Scholar

[6] G.R.C. Pradeep, A. Ramesh, B.D. Prasad, A Review Paper on Hardfacing Processes and Materials, Int. J. Eng. Sci. Technol. 2 (2010) 6507–6510.

Google Scholar

[7] Fe–24 wt.%Cr–4.1 wt.%C hardfacing alloy: Microstructure and carbide refinement mechanisms with ceria additive, Mater. Charact. 72 (2012) 77–86.

DOI: 10.1016/j.matchar.2012.07.004

Google Scholar

[8] Q. Wang, X. Li, Effects of Nb, V, and W on Microstructure and Abrasion Resistance of Fe-Cr-C Hardfacing Alloys, Weld. J. 89 (2010) 133–139.

Google Scholar

[9] T.P.P. Govorun, A.I.I. Lyubich, Theoretical substantiation and development of economically alloyed welding materials, Weld. Int. 30 (2016) 1–7.

DOI: 10.1080/09507116.2015.1093805

Google Scholar

[10] B. Venkatesh, K. Sriker, V.S.V. Prabhakar, Wear Characteristics of Hardfacing Alloys: State-of-the-art, Procedia Mater. Sci. 10 (2015) 527–532.

DOI: 10.1016/j.mspro.2015.06.002

Google Scholar

[11] D. Kotecki, Welding stainless steel, Adv. Mater. Process. 155 (1999) 41–44.

Google Scholar

[12] Microstructure and hardening behavior of Al-modified Fe-1.5 wt%B-0.4 wt%C high-speed steel during heat treatment, Mater. Charact. 132 (2017) 1–9.

DOI: 10.1016/j.matchar.2017.08.001

Google Scholar

[13] A. Joarder, High Speed Steels, Work. Heat Tr. (1994). doi:http://eprints.nmlindia.org/5766.

Google Scholar

[14] C. García, A. Romero, G. Herranz, Y. Blanco, F. Martin, Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy, Mater. Charact. 121 (2016) 175–186.

DOI: 10.1016/j.matchar.2016.10.001

Google Scholar

[15] S.A.A. Dilawary, A. Motallebzadeh, S. Houdková, R. Medlin, S. Haviar, F. Lukáč, M. Afzal, H. Cimenoglu, Š. Houdková, R. Medlin, S. Haviar, F. Lukáč, M. Afzal, H. Cimenoglu, Modification of M2 hardfacing: Effect of molybdenum alloying and laser surface melting on microstructure and wear performance, Wear. 404–405 (2018) 111–121.

DOI: 10.1016/j.wear.2018.03.013

Google Scholar

[16] H.F. Fischmeister, R. Riedl, S. Karagöz, Solidification of high-speed tool steels, Metall. Trans. A. 20 (1989) 2133–2148.

DOI: 10.1007/bf02650299

Google Scholar

[17] A. Tauqir, H. Nowotny, P.R. Strutt, Studies of Carbides in a Rapidly Solidified High-Speed Steel, Metall. Trans. A. 21 (1990) 3021–3026.

DOI: 10.1007/bf02647222

Google Scholar

[18] M. Boccalini, A.V.O. Correa, H. Goldenstein, Rare earth metal induced modification of austenite-M2C , austenite-M6C , and austenite-MC eutectics in as cast M2 high speed steel, Mater. Sci. Technol. 15 (1999) 621–626.

DOI: 10.1179/026708399101506355

Google Scholar

[19] Z.H. Liu, D.Q. Zhang, C.K. Chua, K.F. Leong, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact. 84 (2013) 72–80.

DOI: 10.1016/j.matchar.2013.07.010

Google Scholar

[20] M. Boccalini, H. Goldenstein, Solidification of high speed steels, Int. Mater. Rev. 46 (2001) 92–115.

DOI: 10.1179/095066001101528411

Google Scholar

[21] C. Bureau, Tool Steels, (1973) 10–12.

Google Scholar

[22] Sandvik, Cutting tool materials, Met. Cut. (2000) 132–174.

Google Scholar

[23] M. Kirchgaßner, E. Badisch, F. Franekb, Behaviour of iron-based hardfacing alloys under abrasion and impact, Wear. 265 (2008) 772–779.

DOI: 10.1016/j.wear.2008.01.004

Google Scholar

[24] E.-S. Lee, W.-J. Park, J.Y. Jung, S. Ahn, Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel, Metall. Mater. Trans. A. 29 (1998) 1395–1404.

DOI: 10.1007/s11661-998-0354-0

Google Scholar

[25] J. Arias, M. Cabeza, G. Castro, I. Feijoo, P. Merino, G. Pena, Modification of AISI M2 high speed tool steels after laser surface melting under different operation conditions, Rev Metal. 46 (2010) 206–218.

DOI: 10.1080/09507116.2011.592706

Google Scholar

[26] C.T. Kwok, F.T. Cheng, H.C. Man, Microstructure and corrosion behavior of laser surface-melted high-speed steels, Surf. Coatings Technol. 202 (2007) 336–348.

DOI: 10.1016/j.surfcoat.2007.05.085

Google Scholar

[27] M. Zhang, C. Chen, L. Qin, K. Yan, G. Cheng, H. Jing, T. Zou, Laser additive manufacturing of M2 high-speed steel, Mater. Sci. Technol. (United Kingdom). 0 (2017) 1–10.

DOI: 10.1080/02670836.2017.1355584

Google Scholar

[28] W. Burger, M.J. Burge, Digital Image Processing An algorithmic introduction using Java, (2008).

Google Scholar

[29] A. Ray, S.K. Dhua, Microstructural manifestations in color: Some applications for steels, Mater. Charact. 37 (1996) 1–8.

DOI: 10.1016/s1044-5803(96)00022-8

Google Scholar

[30] G.F.V. Voort, Imaging phases insteels.pdf, Adv. Mater. Process. 163 (2005) 32–37.

Google Scholar

[31] B.L. Bramfitt, A.O. Benscoter, Metallographer's Guide: Practice and Procedures for Irons and Steels, ASM International, 2009. http://ci.nii.ac.jp/ncid/BB00491071 (accessed November 17, 2017).

Google Scholar

[32] G. Krauss, Steels - Processing, Structure, and Performance, 2nd ed., ASM International, Materials Park, Ohio 44073-0002, 2005. https://www.asminternational.org/documents/10192/1849770/05441G_TOC.pdf/3298a867-3fe5-49ad-bc00-9bce6dcc2dc1.

Google Scholar

[33] R.H. Barkalow, R.W. Kraft, J.I. Goldstein, Solidification of M2 high speed steel, Metall. Trans. 3 (1972) 919–926.

DOI: 10.1007/bf02647667

Google Scholar

[34] J.D.B. De Mello, S. Hamar-Thibault, M. Durand-Charre, Eutectoid transformations and precipitation in high carbon tool steels, J. Mater. Sci. 20 (1985) 3453–3461.

DOI: 10.1007/bf01113752

Google Scholar

[35] J. Arias, M. Cabeza, G. Castro, I. Feijoo, P. Merino, G. Pena, Microstructural characterization of laser surface melted AISI M2 tool steel, J. Microsc. 239 (2010) 184–193.

DOI: 10.1111/j.1365-2818.2010.03370.x

Google Scholar

[36] M.E. Glicksman, Polyphase Solidification, in: Princ. Solidif., Springer New York, New York, NY, 2011: p.397–426.

Google Scholar

[37] W.J. Boettinger, D.K. Banerjee, 7 – Solidification, Phys. Metall. (2014) 639–850.

Google Scholar

[38] J. McLaughlin, R. Wayne, J.I. Goldstein, Characterization of the Solidification Structures Within the Dendritic Core of M2 High Speed Steel, Metall. Trans. A. 9 (1978) 730.

DOI: 10.1007/bf02659930

Google Scholar

[39] X. feng Zhou, D. Liu, W. long Zhu, F. Fang, Y. you Tu, J. qing Jiang, Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel, J. Iron Steel Res. Int. 24 (2017) 43–49.

DOI: 10.1016/s1006-706x(17)30007-9

Google Scholar

[40] X. feng ZHOU, W. long ZHU, H. bing JIANG, F. FANG, Y. you TU, J. qing JIANG, A New Approach for Refining Carbide Dimensions in M42 Super Hard High-speed Steel, J. Iron Steel Res. Int. 23 (2016) 800–807.

DOI: 10.1016/s1006-706x(16)30123-6

Google Scholar

[41] A.G. Kostryzhev, C.D. Slater, O.O. Marenych, C.L. Davis, Effect of solidification rate on microstructure evolution in dual phase microalloyed steel, Sci. Rep. 6 (2016) 35715.

DOI: 10.1038/srep35715

Google Scholar

[42] D.W. Hetzner, W. Van Geertruyden, Crystallography and metallography of carbides in high alloy steels, Mater. Charact. 59 (2008) 825–841.

DOI: 10.1016/j.matchar.2007.07.005

Google Scholar

[43] A. Inoue, T. Masumoto, Carbide reactions (M3C-M7C3-M23C6-M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels, Metall. Trans. A. 11 (1980) 739–747.

DOI: 10.1007/bf02661203

Google Scholar

[44] M.Y. Li, Y. Wang, B. Han, L.X. Song, H.W. Ma, Oxidation behaviour of high chrome steel roller after laser surface melting, Rev. Adv. Mater. Sci. 33 (2013) 270–275.

Google Scholar

[45] D. Gortat, P.T. Murray, S.B. Fairchild, M. Sparkes, T.C. Back, G.J. Gruen, M.M. Cahay, N.P. Lockwood, W. O'Neill, Laser surface melting of stainless steel anodes for reduced hydrogen outgassing, Mater. Lett. 190 (2017) 5–8.

DOI: 10.1016/j.matlet.2016.12.101

Google Scholar

[46] B. Sugden, A, A, K.D.H. Bhadeshia, Chapter 4: Thermodynamic Prediction Of The Liquids, Solidus, And Ae3 Temperatures, And Phase Compositions For Low-Alloy Multicomponent Steels, (1989).

DOI: 10.1179/mst.1989.5.10.977

Google Scholar

[47] M. Godec, B.Š. Batič, D. Mandrino, A. Nagode, V. Leskovšek, S.D. Škapin, M. Jenko, Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel, Mater. Charact. 61 (2010) 452–458.

DOI: 10.1016/j.matchar.2010.02.003

Google Scholar