Preparation and Characterization of Polycaprolactone / Graphene / Zinc Oxide Composites

Article Preview

Abstract:

Biodegradable composite from polycaprolactone (PCL) and Graphene/zinc oxide (Graphene/ZnO) is studied. The Graphene/ZnO content is at 0.5%, 1.5% in PCL. Neat PCL and composites were characterized by microstructure, mechanical properties and thermal properties. Scanning electron micrographs show that the additive has agglomerated in PCL/Graphene/ZnO. Agglomeration of the filler results in reduced tensile properties of the composite. The result from XRD indicates Graphene/ZnO can improve the crystallinity of PCL. According to the results of buried soil test and analysis, Graphene/ZnO can reduce the biodegradation rate of PCL and make the material more durable. This new biodegradable composite material can be used as a new environmentally friendly material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kim H, Macosko C W. Processing-property relationships of polycarbonate/graphene composites[J]. Polymer, 2009, 50(15): 3797-3809.

DOI: 10.1016/j.polymer.2009.05.038

Google Scholar

[2] Yao YL, et al. Infusing High-density Polyethylene with Graphene-Zinc Oxide to Produce Antibacterial Nanocomposites with Improved Properties [J]. Chinese Journal of Polymer Science, 2020, doi.org/10.1007/s10118-020-2392-z.

Google Scholar

[3] Tian W, Cheng D, Wang S, et al. Phytic acid modified manganese dioxide/graphene composite aerogel as high-performance electrode materials for supercapacitors[J]. Applied Surface Science, 2019, 495: 143589.

DOI: 10.1016/j.apsusc.2019.143589

Google Scholar

[4] Zhang Q, Yang P, Shen J, et al. Graphene-Amplified Photoelectric Response of CdS Nanoparticles for Cu2+ Sensor[J]. Journal of nanoscience and nanotechnology, 2019, 19(12): 7871-7878.

DOI: 10.1166/jnn.2019.17179

Google Scholar

[5] Zhang R, Wang Y, Ma D, et al. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites[J]. Ultrasonics sonochemistry, 2019, 59: 104731.

DOI: 10.1016/j.ultsonch.2019.104731

Google Scholar

[6] Labet M, Thielemans W. Synthesis of polycaprolactone: a review[J]. Chemical Society Reviews, 2009, 38(12): 484-504.

Google Scholar

[7] Zhou J, Yang Y, Detsch R, et al. Iron surface functionalization system-Iron oxide nanostructured arrays with polycaprolactone coatings: Biodegradation, cytocompatibility, and drug release behavior[J]. Applied Surface Science, 2019, 492: 669-682.

DOI: 10.1016/j.apsusc.2019.06.060

Google Scholar

[8] Deliormanlı A M, Atmaca H. Prechondrogenic ATDC5 cell response to graphene/multi-walled carbon nanotube-containing porous polycaprolactone biocomposite scaffolds[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68(18): 1154-1166.

DOI: 10.1080/00914037.2018.1539984

Google Scholar

[9] Chen X, Zhang Q, Hou D, et al. Fabrication and characterization of novel antibacterial silk sutures with different braiding parameters[J]. Journal of Natural Fibers, 2019, 16(6): 866-876.

DOI: 10.1080/15440478.2018.1441087

Google Scholar

[10] Jost V. Packaging related properties of commercially available biopolymers–An overview of the status quo[J]. Express Polymer Letters, 2018, 12(5): 429-435.

DOI: 10.3144/expresspolymlett.2018.36

Google Scholar

[11] Phromma W, Magaraphan R. Fabrication of admicelled natural rubber by polycaprolactone for toughening poly (lactic acid)[J]. Journal of Polymers and the Environment, 2018, 26(6): 2268-2280.

DOI: 10.1007/s10924-017-1121-3

Google Scholar

[12] Tsou, C H, Yao WH, et al. Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite[J]. Polymers 2017, 9, 100−113.

DOI: 10.3390/polym9030100

Google Scholar

[13] Zhang G, Wang P, Zhang X, et al. The preparation of PCL/MSO/SiO2 hierarchical superhydrophobic mats for oil-water separation by one-step method[J]. European Polymer Journal, 2019, 116: 386-393.

DOI: 10.1016/j.eurpolymj.2019.04.011

Google Scholar

[14] Tsou C H, Wu, C. S et al. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder[J]. Polymer 2019, 160, 265−271.

DOI: 10.1016/j.polymer.2018.11.048

Google Scholar

[15] Tsou, C. H., Lee, H. T., Hung, W. S., Wang, C. C., Shu, C. C., Suen, M. C., & De Guzman, M.. Synthesis and properties of antibacterial polyurethane with novel Bis(3-pyridinemethanol) silver chain extender[J]. Polymer, 2016, 85, 96–105.

DOI: 10.1016/j.polymer.2016.01.042

Google Scholar

[16] Tsou, C. H., Yao, W. H., Wu, C. S., Tsou, C. Y., Hung, W. S., Chen, J. C., … De Guzman, M. R. (2019). Preparation and characterization of renewable composites from Polylactide and Rice husk for 3D printing applications[J]. Journal of Polymer Research, 26(9).

DOI: 10.1007/s10965-019-1882-6

Google Scholar