Synthesis of Kapok (Ceiba pentandra) Carbon Sponges for Recovery of Oil and Organic Solvents

Article Preview

Abstract:

Extensive processes and costly precursors for the fabrication of existing sorbents for oil spills urges to look for more renewable sorbent sources. In this work, hollow, tubular, cellulosic fibers (kapok, Ceiba pentandra) were successfully converted to carbon sponges by pyrolysis at increasing temperature and time. Fourier Transform Infrared (FTIR) spectroscopy confirmed the complete carbonization of the kapok fibers at 800 °C. Scanning Electron Microscope (SEM) images revealed that the carbonized kapok fibers maintained their original tubular structures, suggesting high surface area. Water contact angle measurement showed improved hydrophobicity, with a maximum value of about 135°. The carbonized fibers were able to hold selected organic and oil solvents ranging from 16-20 times the weight of the fibers. The fiber pyrolyzed at 400 °C for 0.5 h showed the highest sorption capacity at 45.56 g/g for palm oil, almost matching that of raw kapok.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Doshi, M. Sillanpää and S. Kalliola: Water Research Vol. 135 (2018), p.262–277.

Google Scholar

[2] C. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois, and G. Anastopoulos: Desalination Vol. 140 (2001), p.259–264.

DOI: 10.1016/s0011-9164(01)00375-7

Google Scholar

[3] O. Ifelebuegu and A. Johnson: Critical Reviews in Environmental Science and Technology Vol. 47 (2017), p.964–1001.

Google Scholar

[4] A. Tuan Hoang, V. Viet Pham, and D. Nam Nguyen: Int. J. Appl. Eng. Res. Vol. 13 (2018), p.4915–4928.

Google Scholar

[5] H. Maleki: Chem. Eng. J. Vol. 300 (2016), p.98–118.

Google Scholar

[6] J. Rong, T. Zhang, F. Qiu, J. Xu, Y. Zhu, D. Yang, and Y. Dai: Mater. Des. Vol. 142 (2018), p.83–92.

Google Scholar

[7] F. Zhang, W. Bin Zhang, Z. Shi, D. Wang, J. Jin, and L. Jiang: Adv. Mater., Vol. 25 (2013), p.4192–4198.

Google Scholar

[8] X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men, and B. Ge: ACS Appl. Mater. Interfaces Vol. 5 (2013) no. 15, p.7208–7214.

DOI: 10.1021/am4015346

Google Scholar

[9] V. Singh, R. J. Kendall, K. Hake, and S. Ramkumar: Industrial and Engineering Chemistry Research Vol. 52 (2013), p.6277–6281.

Google Scholar

[10] X. Zhang, C. Wang, W. Chai, X. Liu, Y. Xu, and S. Zhou: Journal of Chemical Technology and Biotechnology Vol. 92 (2017), p.1613–1619.

Google Scholar

[11] M. U. Herrera, C. M. Futalan, R. Gapusan, and M. D. L. Balela: submitted to Water Science and Technology (2018).

Google Scholar

[12] R. Agcaoili, M. U. Herrera, C. M. Futalan, and M. D. L. Balela: Journal of the Taiwan Institute of Chemical Engineers Vol. 78 (2017), p.359–369.

DOI: 10.1016/j.jtice.2017.06.038

Google Scholar

[13] X. F. Sun, R. Sun, and J. X. Sun: Journal of Agricultural and Food Chemistry Vol. 50 (2002), p.6428–6433.

Google Scholar

[14] S. F. S. Draman, R. Daik, F. A. Latif, and S. M. El-Sheikh: BioResources Vol. 9 (2014), p.8–23.

Google Scholar

[15] M. A. Abdullah, A. U. Rahmah, and Z. Man: Journal of Hazardous Materials Vol. 177 (2010), p.683–691.

Google Scholar

[16] J. Wang, Y. Zheng, and A. Wang: Chemical Engineering Journal Vol. 213 (2012), p.1–7.

Google Scholar

[17] R. S. Rengasamy, D. Das, and C. Praba Karan: Journal of Hazardous Materials Vol. 186 (2011), p.526–532.

Google Scholar

[18] S. Meiwu, X. Hong, and Y. Weidong: Res. J. Vol. 80 (2010), p.159–165.

Google Scholar

[19] S. D. Tigno, M. U. Herrera, and M. D. L. Balela: Surface and Coatings Technology Vol. 350 (2018), p.857–862.

DOI: 10.1016/j.surfcoat.2018.04.017

Google Scholar

[20] J. Wang, Y. Zheng, Y. Kang, and A. Wang: Chemical Engineering Journal Vol. 223 (2013), p.632–637.

Google Scholar

[21] D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, X. Gui,: Carbon Vol. 133 (2018), p.457–463.

Google Scholar

[22] R. B. Gapusan and M. D. L. Balela: submitted to Materials Chemistry and Physics (2020).

Google Scholar

[23] J. Wang, Y. Zheng, and A. Wang: Industrial Crops and Products Vol. 40 (2012), p.178–184.

Google Scholar

[24] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng: Fuel Vol. 86 (2007), p.1781–1788.

Google Scholar

[25] K. Werner, L. Pommer, and M. Broström: Journal of Analytical and Applied Pyrolysis Vol. 110 (2014), p.130–137.

Google Scholar

[26] M. Brebu and C. Vasile: Cellulose Chem. Technol. Vol. 44 (2010), p.353–363.

Google Scholar

[27] K. Cheng, W. T. Winter, and A. J. Stipanovic: Polym. Degrad. Stab. Vol. 97 (2012), p.1606–1615.

Google Scholar

[28] G. Dorez, L. Ferry, R. Sonnier, A. Taguet, and J. M. Lopez-Cuesta: J. Anal. Appl. Pyrolysis Vol. 107 (2014), p.323–331.

DOI: 10.1016/j.jaap.2014.03.017

Google Scholar

[29] M. Fan, D. Dai, and B. Huang: Fourier Transform - Mater. Anal. (2012).

Google Scholar

[30] Y. Cao et al.: Sustainable Energy and Fuels Vol. 2 (2018), p.455–465.

Google Scholar