Parametric Study of the Adsorption of Pb (II) and Cr (VI) Ions on Modified PAN-Kapok Fibers

Article Preview

Abstract:

This paper presents a parametric study on the adsorptive property of NaOH-treated polyacrylonitrile (PAN)-kapok fibers for the removal of Pb (II) and Cr (VI) ions in aqueous solutions. Generally, the NaOH-hydrolyzed PAN-kapok favors the adsorption of Pb (II) compared to Cr (VI). The adsorption capacity was in the range of 41.67-83.33 mg/g as the initial Pb (II) concentration was increased from 50 to 100 ppm. Similarly, the adsorption capacity for Cr (VI) was from 8.24 to 15.81 mg/g as the initial concentration was raised from 50 to 150 ppm. The adsorption capacity was also enhanced by increasing the adsorbent dosage. Finally, uptake of Pb (II) at the early stages of the adsorption was fast, with adsorption capacity reaching ~120 mg/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-138

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] WWAP (United Nations World Water Assessment Programme). 2017. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Paris, UNESCO.

DOI: 10.18356/b3695c8a-en

Google Scholar

[2] Asian Development Bank. Fast Facts: Urbanization in Asia. Published: 15 Nov. (2011).

Google Scholar

[3] S. Rezania, M. Ponraj, A. Talaiekhozani, S.E. Mohamad, M.F. Md Din, S. Mat Taib, F. Sabbagh and F. Md Sairan: J. Environ. Manage. Vol. 163 (2015), pp.125-133.

DOI: 10.1016/j.jenvman.2015.08.018

Google Scholar

[4] S.K. Gunatilake: J. Multidiscip. Eng. Sci. Studies Vol. 1 (2015), pp.12-18.

Google Scholar

[5] R. Gapusan and M.D.L. Balela: Mater. Chem. Phys. Vol. 243 (2020), 122682.

Google Scholar

[6] F. Fu and Qi Wang: J. Environ. Manage. Vol. 92 (2011), pp.407-418.

Google Scholar

[7] C.L.E. Aquino, M.J.C. Bongar, A.B. Silvestre and M.D.L. Balela: Key Eng. Mater. Vol. 775 (2018), pp.254-259.

Google Scholar

[8] M.U. Herrera, C.M. Futalan, R. Gapusan and M.D.L. Balela: Water Sci. Tech. Vol. 78 (2018) 1137-1147.

Google Scholar

[9] A.R. Agcaoili, M.U. Herrera, C.M. Futalan and M.D.L. Balela: J. Taiwan Inst. Chem. Eng. Vol. 78 (2017), pp.359-69.

Google Scholar

[10] A.C. Lacuesta, M.U. Herrera, R. Manalo and M.D.L. Balela: Surf. Coat. Tech. Vol. 350 (2018), pp.971-976.

Google Scholar

[11] M.D.L. Balela, M.M. Intila and S.R. Salvanera: Mater. Today: Proceed. Vol. 17 (2019), pp.672-678.

DOI: 10.1016/j.matpr.2019.06.349

Google Scholar

[12] S.H. Lee, Y.G. Jeong, Y.I. Yoon and W.H. Park: Polym. Degrad. Stab. Vol. 143 (2017), pp.2017-213.

Google Scholar

[13] M.L. Gupta, B. Gupta, W. Opperman and G. Hardtmann: Appl. Polym. Vol. 91 (2004), pp.3127-3133.

Google Scholar

[14] T.T. Lim and X. Huang: Chemosphere Vol. 66 (2007), pp.955-963.

Google Scholar

[15] D. M. Martin, M. Faccini, M.A. Garcia and D. Amantia: J. Environ. Chem. Eng. Vol. 6 (2018), pp.236-245.

Google Scholar

[16] P. Kampalanonwat and P. Supaphol: Ind. Eng. Chem. Res. Vol. 50 (2011), pp.11912-11921.

Google Scholar

[17] S.M. Molaei, H. Adelnia, A.M. Seif and J.N. Gavgani: Colloid Polym. Sci. Vol. 297 (2019), pp.1245-1253.

DOI: 10.1007/s00396-019-04543-0

Google Scholar

[18] B.W. Zhang, K. Fischer, D. Bieniek and A. Kettrup: Reactive Polym. Vol 24 (1994), pp.49-58.

Google Scholar

[19] S. Deng, R. Bai and J.P. Chen: J. Colloid Inter. Sci. Vol. 260 (2003), pp.265-272.

Google Scholar

[20] S. Deng, R. Bai and J.P. Chen: Langmuir Vol. 19 (2003), pp.5058-5064.

Google Scholar

[21] P. Kampalanonwat and P. Supaphol: ACS Appl. Mater. Inter. Vol. 2 (2010), pp.3619-3627.

Google Scholar

[22] P.K. Neghlani, M. Rafizadeh and F.A. Taromi: J. Hazard. Mater. Vol. 186 (2011), pp.182-189.

Google Scholar