Viscosity of Liquid Nanocrystalline Alloys

Article Preview

Abstract:

Temperature dependences of the kinematic viscosity, density, and electrical resistivity of Fe72.5Cu1Nb2Mo1.5Si14B9 and Fe84.5Cu0.6Nb0.5Si1.5B8.6P4C0.3 multicomponent melts have been studied. We found different behavior of the temperature dependences of viscosity near the critical point Tk = 1760 K during heating, which is associated with different chemical compositions of the clusters in the melt. In the cooling stage, the activation energy of the viscous flow for these two melts is the same and equal to 43 kJ·mol-1. At a temperature of 1720 K, the relative free volume is 5.1 and 7.5 % of the total melt volume for Fe72.5Cu1Nb2Mo1.5Si14B9 and Fe84.5Cu0.6Nb0.5Si1.5B8.6P4C0.3 respectively. In the cooling stage, the electrical resistance of melt is higher than at the heating stage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-41

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Herzer: in Handbook of Magnetic Materials, Vol.10, edited by K.H.J. Buschow (Elsevier Science B.V., 1997).

Google Scholar

[2] A. Makino: IEEE Trans. Magn. 48 (2012), p.1331.

Google Scholar

[3] P.S. Popel and V.E. Sidorov: Mater. Sci. Eng. A226–228 (1997), p.237.

Google Scholar

[4] U. Dahlborg, M. Calvo-Dahlborg, P.S. Popel and V.E. Sidorov: Eur. Phys. J. B14 (2000), p.639.

DOI: 10.1007/s100510051073

Google Scholar

[5] G. Kumar, T. Ohkubo and K. Hono: J. Mater. Res. 24 (2009), p.2353.

Google Scholar

[6] B.A. Baum: Metal liquids (Nauka, Moscow, 1979).

Google Scholar

[7] V. Tsepelev, V. Konashkov, Y. Starodubtsev, Y. Belozerov and D. Gaipisherov: IEEE Trans. Magn. 48, (2012), p.1327.

DOI: 10.1109/tmag.2011.2175209

Google Scholar

[8] J. Frenkel, Kinetic theory of liquids (Сlaredon Press, 1946).

Google Scholar

[9] A.I. Batschinski: Z. Phys. Chem. 84 (1913), p.643.

Google Scholar

[10] V. Tsepelev, Yu. Starodubtsev, V. Konashkov, K. Wu and R. Wang: J. Alloys Comp. 790 (2019), p.547.

Google Scholar

[11] T. Iida and R.I.L. Guthrie: The thermophysical properties of metallic liquids (University Press, Oxford, 2015).

Google Scholar

[12] A.L. Beľtyukov, V.I. Laďyanov and A.I. Sishmarin: High Temperature 52 (2014), p.185.

Google Scholar

[13] V.I. Laďyanov, A.L. Beľtyukov and A.I. Sishmarin: Rasplavy 4 (2005), p.34.

Google Scholar

[14] A.L. Beľtyukov, O.Yu. Goncharov and V.I. Laďyanov: Rus. J. Phys. Chem. 91 (2017), p. (1919).

Google Scholar

[15] B. Dong, S. Zhou, J. Qin, Y. Li, H. Chen and Y. Wang:Prog. Nat. Sci.: Mater. Int. 28 (2018), p.696.

Google Scholar

[16] J. Miettinen, V-V. Visuri, T. Fabritius, N. Milcheva and G. Vassilev: Arch. Metall. Mater. 64 (2019), p.1239.

Google Scholar