Novel Direct Cladding of Magnesium and Aluminum Alloys Using a Horizontal Twin Roll Caster

Article Preview

Abstract:

This study introduces the direct cladding of magnesium and aluminum alloys using a horizontal twin roll caster in one step. A horizontal twin roll caster can cast a Mg/Al clad strip with thickness exceeding 5mm at a roll speed of 8m/min in one step, which is difficult for a vertical twin roll caster. Therefore, it is possible to cast a thick clad strip with different melting point alloys using a horizontal twin roll caster at low speed. It is also possible to cast clad strips using as the overlay an alloy that has a higher melting point than that of the base strips. The thickness of the Mg/Al clad strip is 6.5mm, and the ratio of the Mg layer to the Al layer is 3:2. The surface of the clad strip is good, and there is no void between bonding interfaces. The mixing layer of the bonding interface is deeply related to the reduction rate. As the reduction rate increases, the mixing layer becomes more balanced and the thickness of the mixed layer decreases to 68μm. By observation of the interface of the cladded material, the mixed layer of the bonding interface is divided into two layers. It has been found the mixed layer near the Al layer has the highest hardness (up to 228HV), and the tensile shearing strength of the manufactured Mg/Al clad strip was 44MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.E. Lee, D.H. Bae, W.S. Chung, K.H. Kim, J.H. Lee, Y.R. Cho: J. Mater. Process. Technol. Vol. 187-188 (2007), pp.546-549.

Google Scholar

[2] Peter Groche, Simon Wohletz, Matthias Brenneis, Christian Pabst, Franziska Resch: J. Mater. Process. Technol. Vol. 214 (2014), pp.1972-1994.

Google Scholar

[3] Haiping Yu, Zhisong Fan, Chunfeng Li:J. Mater. Process. Technol. Vol. 214 (2014), pp.141-150.

Google Scholar

[4] M. Ahasan Habib, Hiroki Keno, Ryota Uchida, Akihisa Mori, Kazuyuki Hokamoto: J. Mater. Process. Technol. Vol. 217 (2015), pp.310-316.

Google Scholar

[5] A.V. Mikhaylovskaya, A.G. Mochungovskiy, A.D. Kotov, O.A. Yakovtseva, M.V. Gorshenkov, V.K. Portnoy: J. Mater. Process. Technol. Vol. 243 (2017), pp.355-364.

DOI: 10.1016/j.jmatprotec.2016.12.025

Google Scholar

[6] Xiaobo Zhang, Yangbo Yu, Bin Li, Youchun Zhao, Junqiang Ren, Yingjie Yan, Rui Cao, Jianhong Ghen: J. Mater. Process. Technol. Vol. 275 (2020), p.116378.

Google Scholar

[7] U. Reisgen, A. Shiebahn, J. Lotte, G. Hopmann, D. Schneider, J. Neuhaus: J. Mater. Process. Technol. Vol. 282 (2020), p.116674.

Google Scholar

[8] H.G. Huang, Y.K. Dong, M. Yan, F.S. Du: Trans. Nonferrous Met. Soc. China Vol. 27 (2017), pp.1019-1025.

Google Scholar

[9] G. Chen, J. Li, G. Xu: J. Mater. Process. Technol. Vol. 246 (2017), pp.1-12.

Google Scholar

[10] G. Chen, J.T. Li, H.L. Yu, L.H. Su, et al: Mater. Des. Vol. 112 (2016) pp.263-274.

Google Scholar

[11] Wang Juan, Li Yajiang, Liu Peng, Geng Haoran : J. Mater. Process. Technol. Vol. 205 (2008), pp.146-150.

Google Scholar

[12] M. Thirumurugan, S. Anka Rao, S. Kumaran, T. Srinivasa Rao: J. Mater. Process. Technol. Vol. 211 (2011), pp.1637-1642.

Google Scholar

[13] Yahya Mahmoodkhani, Mary A. Wells: J. Mater. Process. Technol. Vol. 232 (2016), pp.175-183.

Google Scholar

[14] Guangyu Li, Wnechao Yang, Wenming Jiang, Feng Guan, Haixiao Jiang, Yao Wu, Zitian Fan: J. Mater. Process. Technol. Vol. 265 (2019), pp.112-121.

Google Scholar

[15] Ning Liu, Lu Chend, Ying Fu, Yongguang Zhang, Taizhe Tan, Fuxing Yin, Chunyong Liang: J. Mater. Process. Technol. Vol. 267 (2019), pp.196-204.

Google Scholar

[16] Guangyu Li, Wnechao Yang, Wenming Jiang, Feng Guan, Haixiao Jiang, Yao Wu, Zitian Fan: J. Mater. Process. Technol. Vol. 288 (2021), p.116874.

Google Scholar

[17] T. Haga, H. Watari: Manuf. Sci. Technol. Vol. 3 (2015), pp.197-203.

Google Scholar

[18] T. Haga, K. Takahashi: J. Mater. Process. Technol. Vol. 157-158 (2004), pp.706-711.

Google Scholar

[19] T. Haga, K. Takahashi: J. Mater. Process. Technol. Vol. 157-158 (2004), pp.701-705.

Google Scholar

[20] T. Haga, R. Nakamura, S. Kumai, H. Watari: Arch. Mater. Sci. Eng. Vol. 37 (2009), pp.117-124.

Google Scholar

[21] T. Haga, M. Sawai, R. Nakamura, et al: KEM. Vol. 443 (2010), pp.128-133.

Google Scholar

[22] T. Haga, S. Suzuki: J. Mater. Process. Technol. Vol. 138 (2003), pp.366-371.

Google Scholar

[23] H. Harada, S. Nishida, E. Masaki, H. watari: Metall and Materi Trans B Vol. 45 (2014), pp.427-437.

Google Scholar

[24] T. Haga, R. Nakamura, S. Kumai, H. Watari: Arch. Mater. Sci. Eng. Vol. 62 (2013), pp.36-44.

Google Scholar

[25] X.P. Zhang, M.J. Tan, T.H. Yang, et al: Bull Mater Sci Vol. 34 (2011), pp.805-810.

Google Scholar