Hydrothermal Synthesis of Binder-Free Kapok (Ceiba pentandra) Fiber Paper-NiCo2O4 Supercapacitor Electrode

Article Preview

Abstract:

There is a need to address the gap between the theoretical benefits and cost-efficient production of supercapacitors in the market in order to sway the preference of the industry from the current perishable energy sources and storage. More extensive exploration of sustainable fabrication methods and materials used for renewable energy storage are just some of the factors that would decrease this gap. A binder-free supercapacitor electrode made of NiCo2O4 and carbonized kapok fiber paper (CKFP) was successfully fabricated by hydrothermal process at relatively low temperatures. NiCo2O4 urchin-like structures were deposited on the surface of carbon fiber paper (CFP) and CKFP. XRD analysis confirmed the successful conversion of kapok fiber paper to CKFP after pyrolysis, as well as the growth of pure spinel NiCo2O4 nanostructures on CFP and CKFP. The cyclic voltammetry curves showed that the CFP-NiCo2O4 prepared at 140 °C had the highest specific capacitance of 143.51 Fg-1 at 2 mVs-1. The CKFP-NiCo2O4 synthesized at the same temperature yielded slightly higher specific capacitance of 146.29 Fg-1 at 2 mVs-1, and 508 Fg-1 at 0.5 Ag-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Vangari, T. Pryor and L. Jiang: Energy Engineering Vol. 139 (2013), pp.71-79.

Google Scholar

[2] G. Wang, L. Zhang and J. Zhang: The Royal Society of Chemistry Vol. 41 (2012), pp.797-828.

Google Scholar

[3] L. A. Dahonog, J. D. Ocon and M. D. L. Balela: Solid State Phenomena Vol. 266 (2017), pp.177-181.

Google Scholar

[4] E. M. A. Espejo and M. D. L. Balela: Solid State Phenomena Vol. 266 (2017), pp.105-109.

Google Scholar

[5] Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng and R. Qu: International Journal of Electrochemical Science Vol. 11 (2016), p.8270 – 8279.

Google Scholar

[6] A. C. Lacuesta, M. U. Herrera, R. Manalo and M. D. L. Balela: Surface and Coatings Technology Vol. 350 (2018), pp.971-976.

DOI: 10.1016/j.surfcoat.2018.03.043

Google Scholar

[7] M. Wang, B. Gao, D. Tang, H. Sun, X. Yin and C. Yu: Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 538 (2018), pp.63-72.

DOI: 10.1016/j.colsurfa.2017.10.061

Google Scholar

[8] D. P. Dubal, P. Gomez-Romero, B. R. Sankapal and R. Holze: Nano Energy Vol. 11 (2015), pp.377-399.

DOI: 10.1016/j.nanoen.2014.11.013

Google Scholar

[9] L. A. Dahonog, J. D. Ocon and M. D. L. Balela: IOP Conference Series: Materials Science and Engineering Vol. 201 (2017), pp.1-5.

Google Scholar

[10] X. Luo, J. Wang, M. Dooner and J. Clarke: Applied Energy Vol. 137 (2015), pp.511-536.

Google Scholar

[11] P. Simon, Y. Gogotsi and B. Dunn: MATERIALS SCIENCE Vol. 343 (2014), pp.1210-1211.

Google Scholar

[12] M. M. M. Ahmed and T. Imae: Nanolayer Research (2017), pp.353-389.

Google Scholar

[13] B. Dolah, M. Deraman, M. Othman, R. Farma, E. Taer, N. H. Awitdrus, I. A. Talib, R. Omar and N. S. M. Nor: Materials Research Bulletin Vol. 60 (2014), pp.10-19.

DOI: 10.1016/j.materresbull.2014.08.013

Google Scholar

[14] E. M. A. Espejo and M. D. L. Balela: IOP Conf. Series: Materials Science and Engineering Vol. 201 (2017), pp.1-5.

Google Scholar

[15] L. A. Dahonog and M. D. L. Balela: Key Engineering Materials Vol. 775 (2018), pp.139-143.

Google Scholar

[16] Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen and G. Shen: Journal of Materials Chemistry Vol. 22 (2012), pp.21647-21653.

Google Scholar

[17] L. Wang, X. Yang, Q. Wang, Y. Zeng, L. Ding and W. Jiang: Journal of Environmental Sciences Vol. 51 (2017), pp.248-255.

Google Scholar

[18] A. S. Adeleye and A. A. Keller: Water Research Vol. 49 (2014), pp.236-250.

Google Scholar

[19] J. R. Connolly: Information on http://epswww.unm.edu (2012).

Google Scholar