Corrosion Behaviour of In Situ AlxNiy Reinforced AA6061 Composite

Article Preview

Abstract:

In-situ AlxNiy reinforced aluminium matrix composites (AMCs) were produced by stir-casting route by adding 5, 10 and 15 weight percentage (wt.%) of Ni to AA6061 aluminum alloy. The density, porosity, microstructure, hardness and corrosion behaviour of the as-cast AMCs was studied and compared with that of the as-cast AA6061 alloy. The porosity in all the castings was found to be less than 0.1%. Further, the porosity was found to decrease with increase in Ni addition. Optical microscopy studies showed that in-situ formed AlxNiy was distributed along the dendritic arms. The distribution became non-homogeneous and coarse with increase in AlxNiy content. The coarse distribution of AlxNiy in the AA6061 matrix also resulted in the decrease in hardness of the composite, after an initial increase in hardness till 10 wt.% Ni addition. The open circuit potential (OCP) and corrosion potential (Ecorr) of the AMCs with 5, 10 and 15 wt. of % Ni addition was noble than that of the AA6061 alloy. This was understood to be due to the presence of AlxNiy intermetallic which is known to have a noble corrosion potential than the aluminium alloy. However, the corrosion current (icorr) increased while the polarization resistance (Rp) decreased with increase in Ni addition in the AMC. This indicates that the coarse non-homogeneous distribution of in-situ AlxNiy had a detrimental effect on the corrosion performance of the AMCs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-103

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. K. Rohatgi, Metal matrix composites, Defence Sci. J. 43 (2013) 323–349.

Google Scholar

[2] A.M. Hassan, A. Alrashdan, M.T. Hayajneh, A.T. Mayyas, Wear behavior of Al–Mg–Cu–based composites containing SiC particles, Tribol. Int. 42 (2009) 1230–1238.

DOI: 10.1016/j.triboint.2009.04.030

Google Scholar

[3] H. Nami, H. Adgi, M. Sharifitabar, H. Shamabadi, Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite, Mater. Des. 32 (2011) 976–983.

DOI: 10.1016/j.matdes.2010.07.008

Google Scholar

[4] M. Sharifitabar, A. Sarani, S. Khorshahian, M. Sharfiee Afarani, Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route, Mater. Des. 32 (2011) 4164–4172.

DOI: 10.1016/j.matdes.2011.04.048

Google Scholar

[5] S.A. Alidokht, A. Abdollah-Zadeh, S. Soleymani, H. Assadi, Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing, Mater. Des. 32 (2011) 2727–2733.

DOI: 10.1016/j.matdes.2011.01.021

Google Scholar

[6] H.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminium alloy cast composites, Mater. Des. 44 (2013) 438–445.

DOI: 10.1016/j.matdes.2012.08.008

Google Scholar

[7] A. Baradeswaran, A. Elaya Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites, Compos., Part B 54 (2013) 146–152.

DOI: 10.1016/j.compositesb.2013.05.012

Google Scholar

[8] H. Wang, G. Li, Y. Zhao, G. Chen, In situ fabrication and microstructure of Al2O3 particles reinforced aluminium matrix composites, Mater. Sci. Eng. A 527 (2010) 2881–2885.

DOI: 10.1016/j.msea.2010.01.022

Google Scholar

[9] J. Wang, D. Yi, X. Su, F. Yin, H. Li, Properties of submicron AlN particulate reinforced aluminium matrix composite, Mater. Des. 30 (2009) 78–81.

DOI: 10.1016/j.matdes.2008.04.039

Google Scholar

[10] J. D. R. Selvam, D.S. R. Smart, I. Dinaharan, Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminium alloy composites prepared by compocasting, Mater. Des. 49 (2013) 28–34.

DOI: 10.1016/j.matdes.2013.01.053

Google Scholar

[11] K. Niranjan, P.R. Lakshminarayanan, Dry sliding wear behaviour of in-situ Al–TiB2 composites, Mater. Des. 47 (2013) 167–173.

DOI: 10.1016/j.matdes.2012.11.035

Google Scholar

[12] I. Dinaharan, N. Murugan, Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites, Mater. Sci. Eng. A 543 (2012) 257–266.

DOI: 10.1016/j.msea.2012.02.085

Google Scholar

[13] B.Panda, Vishwanatha A D, Niranjan C A, Harisha P, Chandan K R, R. Kumar, Study of microstructure and wear properties of novel aluminium-modified fly ash composite IOP Conf. Ser Mater. Sci. Eng. 561 (2019) 012005.

DOI: 10.1088/1757-899x/561/1/012005

Google Scholar

[14] B. Panda, Niranjan C A, Vishwanatha A D, Harisha P, Chandan K R, R. Kumar, Development of novel stir cast aluminium composite with modified coconut shell ash filler, Materials Today: Proceedings 22 (2020) 2715–2724.

DOI: 10.1016/j.matpr.2020.03.402

Google Scholar

[15] N. Kumar, R. K. Gautam, S. Mohan, In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites, Mater. Des. 80 (2015) 129–136.

DOI: 10.1016/j.matdes.2015.05.020

Google Scholar

[16] D. Zhao, X. Liu, Y. Liu, X. Bian, In-situ preparation of Al matrix composites reinforced by TiB2 particles and sub-micron ZrB2, J. Mater. Sci. Lett. 40 (2005) 4365–4368.

DOI: 10.1007/s10853-005-0796-3

Google Scholar

[17] K. Tian, Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, X. Wu, Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites, J. Alloys Compd. 594 (2014) 1–6.

DOI: 10.1016/j.jallcom.2014.01.117

Google Scholar

[18] S. Kumar, M. Chakraborty, S. Subramanya Sarma, B.S. Murty, Tensile and wear behaviour of in-situ Al–7Si/TiB2 particulate composites, Wear 265 (2008) 134–142.

DOI: 10.1016/j.wear.2007.09.007

Google Scholar

[19] M. Zhao, G. Wu, L. Jiang, Z. Dou, Friction and wear properties of TiB2P/Al composite, Compos., Part A – Appl. Sci. 37 (2006) 1916–(1921).

DOI: 10.1016/j.compositesa.2005.12.018

Google Scholar

[20] C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites, Mater. Sci. Eng. A 528 (2011) 4125–4132.

DOI: 10.1016/j.msea.2011.02.024

Google Scholar

[21] B. S. Yigezu, P.K Jha, M.M. Mahapatra, The key attributes of synthesizing ceramic particulate reinforced Al-based matrixcomposites through stir casting process: a review. Mater Manuf. Process 28 (2013) 969–979.

Google Scholar

[22] Y. Shen, X. Li, T. Hong, J. Geng, H. Wang, Effects of TiB2 particles on microstructure and mechanical properties of an in-situTiB2–Al–Cu–Li matrix composite, Mater Sci Eng A 655 (2016) 265–268.

DOI: 10.1016/j.msea.2015.12.104

Google Scholar

[23] N. Kumar, R. K. Gautam, S. Mohan, In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites, Mater. Des. 80 (2015) 129–136.

DOI: 10.1016/j.matdes.2015.05.020

Google Scholar

[24] M. Balakrishnan, I. Dinaharan, K. Kalaiselvan, R. Palanivel, Friction stir processing of Al3Ni intermetallic particulate reinforced cast aluminum matrixcomposites: Microstructure and tensile properties J. Mater. Sci. Technol. 9 (3) (2020) 4356-4367.

DOI: 10.1016/j.jmrt.2020.02.060

Google Scholar

[25] R. Gupta, G. P. Chaudhari, B. S. S. Daniel, Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition, Compos B 140 (2018) 27–34.

DOI: 10.1016/j.compositesb.2017.12.005

Google Scholar

[26] Y. B. Choi, K. Matsugi, G. Sasaki, Manufacturing process of dispersed intermetallic compounds Al alloy composites by using porous nickel. J. Compos. Mater. 48(18) (2014) 2289–2295.

DOI: 10.1177/0021998313497496

Google Scholar

[27] S. H. Wang, J. Y. Uan, T. S. Lui, L. H. Chen, Examination on the aging and tensile properties of Al-Zn-Mg/Al3Ni eutectic composite, Metall Mater Trans A 33(2002) 707–711.

DOI: 10.1007/s11661-002-0135-0

Google Scholar

[28] A. O. Myalska, Microstructure of nickel aluminides formed in situ in aluminium matrix composites, Microchim Acta 145 (2004) 133–137.

DOI: 10.1007/s00604-003-0142-x

Google Scholar

[29] C. J. Song, Z. M. Xu J. G. Li, In-situ Al/Al3Ni functionally graded materials by electromagnetic separation method, Mater. Sci. Eng. A 445–446 (2007)148–154.

DOI: 10.1016/j.msea.2006.09.009

Google Scholar

[30] T. P. D. Rajan, R. M. Pillai, B. C. Pai, Functionally graded Al–Al3Ni in situ intermetallic composites: fabrication and microstructural characterization, J Alloys Compd 453 (2008) L4–7.

DOI: 10.1016/j.jallcom.2006.11.181

Google Scholar

[31] Y. B. Choi, K. Matsugi, G. Sasaki, Manufacturing process of dispersed intermetallic compounds Al alloy composites by using porous nickel, J Compos Mater 48 (2014) 2289–2295.

DOI: 10.1177/0021998313497496

Google Scholar

[32] G. Peng Z. Tietao, X. Xiaoqing, G. Zhi, C. Li, Refinement mechanism research of Al3Ni phase in Ni-7050 alloy, Rare Met. Mater. Eng. 42 (2013) 6–13.

DOI: 10.1016/s1875-5372(13)60028-4

Google Scholar

[33] L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, (1976).

Google Scholar

[34] W.S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Pairodocs Publications, Wisconsin, (1994).

Google Scholar

[35] W. R. Osório, L. C. Peixoto, M. V. Canté, A. Garcia, Microstructure features affecting mechanical properties and corrosion behaviour of a hypoeutectic Al–Ni alloy, Mater. Des. 31 (2010) 4485–4489.

DOI: 10.1016/j.matdes.2010.04.045

Google Scholar

[36] C. Li, T. Liang, R. Ma, A. Du, Y. Fan, X. Zhao, X. Cao, Superhydrophobic surface containing cerium salt and organosilane for corrosion protection of galvanized steel, J. Alloys Compd, 825 (2020) 153921.

DOI: 10.1016/j.jallcom.2020.153921

Google Scholar