[1]
P. K. Rohatgi, Metal matrix composites, Defence Sci. J. 43 (2013) 323–349.
Google Scholar
[2]
A.M. Hassan, A. Alrashdan, M.T. Hayajneh, A.T. Mayyas, Wear behavior of Al–Mg–Cu–based composites containing SiC particles, Tribol. Int. 42 (2009) 1230–1238.
DOI: 10.1016/j.triboint.2009.04.030
Google Scholar
[3]
H. Nami, H. Adgi, M. Sharifitabar, H. Shamabadi, Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite, Mater. Des. 32 (2011) 976–983.
DOI: 10.1016/j.matdes.2010.07.008
Google Scholar
[4]
M. Sharifitabar, A. Sarani, S. Khorshahian, M. Sharfiee Afarani, Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route, Mater. Des. 32 (2011) 4164–4172.
DOI: 10.1016/j.matdes.2011.04.048
Google Scholar
[5]
S.A. Alidokht, A. Abdollah-Zadeh, S. Soleymani, H. Assadi, Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing, Mater. Des. 32 (2011) 2727–2733.
DOI: 10.1016/j.matdes.2011.01.021
Google Scholar
[6]
H.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminium alloy cast composites, Mater. Des. 44 (2013) 438–445.
DOI: 10.1016/j.matdes.2012.08.008
Google Scholar
[7]
A. Baradeswaran, A. Elaya Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites, Compos., Part B 54 (2013) 146–152.
DOI: 10.1016/j.compositesb.2013.05.012
Google Scholar
[8]
H. Wang, G. Li, Y. Zhao, G. Chen, In situ fabrication and microstructure of Al2O3 particles reinforced aluminium matrix composites, Mater. Sci. Eng. A 527 (2010) 2881–2885.
DOI: 10.1016/j.msea.2010.01.022
Google Scholar
[9]
J. Wang, D. Yi, X. Su, F. Yin, H. Li, Properties of submicron AlN particulate reinforced aluminium matrix composite, Mater. Des. 30 (2009) 78–81.
DOI: 10.1016/j.matdes.2008.04.039
Google Scholar
[10]
J. D. R. Selvam, D.S. R. Smart, I. Dinaharan, Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminium alloy composites prepared by compocasting, Mater. Des. 49 (2013) 28–34.
DOI: 10.1016/j.matdes.2013.01.053
Google Scholar
[11]
K. Niranjan, P.R. Lakshminarayanan, Dry sliding wear behaviour of in-situ Al–TiB2 composites, Mater. Des. 47 (2013) 167–173.
DOI: 10.1016/j.matdes.2012.11.035
Google Scholar
[12]
I. Dinaharan, N. Murugan, Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites, Mater. Sci. Eng. A 543 (2012) 257–266.
DOI: 10.1016/j.msea.2012.02.085
Google Scholar
[13]
B.Panda, Vishwanatha A D, Niranjan C A, Harisha P, Chandan K R, R. Kumar, Study of microstructure and wear properties of novel aluminium-modified fly ash composite IOP Conf. Ser Mater. Sci. Eng. 561 (2019) 012005.
DOI: 10.1088/1757-899x/561/1/012005
Google Scholar
[14]
B. Panda, Niranjan C A, Vishwanatha A D, Harisha P, Chandan K R, R. Kumar, Development of novel stir cast aluminium composite with modified coconut shell ash filler, Materials Today: Proceedings 22 (2020) 2715–2724.
DOI: 10.1016/j.matpr.2020.03.402
Google Scholar
[15]
N. Kumar, R. K. Gautam, S. Mohan, In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites, Mater. Des. 80 (2015) 129–136.
DOI: 10.1016/j.matdes.2015.05.020
Google Scholar
[16]
D. Zhao, X. Liu, Y. Liu, X. Bian, In-situ preparation of Al matrix composites reinforced by TiB2 particles and sub-micron ZrB2, J. Mater. Sci. Lett. 40 (2005) 4365–4368.
DOI: 10.1007/s10853-005-0796-3
Google Scholar
[17]
K. Tian, Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, X. Wu, Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites, J. Alloys Compd. 594 (2014) 1–6.
DOI: 10.1016/j.jallcom.2014.01.117
Google Scholar
[18]
S. Kumar, M. Chakraborty, S. Subramanya Sarma, B.S. Murty, Tensile and wear behaviour of in-situ Al–7Si/TiB2 particulate composites, Wear 265 (2008) 134–142.
DOI: 10.1016/j.wear.2007.09.007
Google Scholar
[19]
M. Zhao, G. Wu, L. Jiang, Z. Dou, Friction and wear properties of TiB2P/Al composite, Compos., Part A – Appl. Sci. 37 (2006) 1916–(1921).
DOI: 10.1016/j.compositesa.2005.12.018
Google Scholar
[20]
C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites, Mater. Sci. Eng. A 528 (2011) 4125–4132.
DOI: 10.1016/j.msea.2011.02.024
Google Scholar
[21]
B. S. Yigezu, P.K Jha, M.M. Mahapatra, The key attributes of synthesizing ceramic particulate reinforced Al-based matrixcomposites through stir casting process: a review. Mater Manuf. Process 28 (2013) 969–979.
Google Scholar
[22]
Y. Shen, X. Li, T. Hong, J. Geng, H. Wang, Effects of TiB2 particles on microstructure and mechanical properties of an in-situTiB2–Al–Cu–Li matrix composite, Mater Sci Eng A 655 (2016) 265–268.
DOI: 10.1016/j.msea.2015.12.104
Google Scholar
[23]
N. Kumar, R. K. Gautam, S. Mohan, In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites, Mater. Des. 80 (2015) 129–136.
DOI: 10.1016/j.matdes.2015.05.020
Google Scholar
[24]
M. Balakrishnan, I. Dinaharan, K. Kalaiselvan, R. Palanivel, Friction stir processing of Al3Ni intermetallic particulate reinforced cast aluminum matrixcomposites: Microstructure and tensile properties J. Mater. Sci. Technol. 9 (3) (2020) 4356-4367.
DOI: 10.1016/j.jmrt.2020.02.060
Google Scholar
[25]
R. Gupta, G. P. Chaudhari, B. S. S. Daniel, Strengthening mechanisms in ultrasonically processed aluminium matrix composite with in-situ Al3Ti by salt addition, Compos B 140 (2018) 27–34.
DOI: 10.1016/j.compositesb.2017.12.005
Google Scholar
[26]
Y. B. Choi, K. Matsugi, G. Sasaki, Manufacturing process of dispersed intermetallic compounds Al alloy composites by using porous nickel. J. Compos. Mater. 48(18) (2014) 2289–2295.
DOI: 10.1177/0021998313497496
Google Scholar
[27]
S. H. Wang, J. Y. Uan, T. S. Lui, L. H. Chen, Examination on the aging and tensile properties of Al-Zn-Mg/Al3Ni eutectic composite, Metall Mater Trans A 33(2002) 707–711.
DOI: 10.1007/s11661-002-0135-0
Google Scholar
[28]
A. O. Myalska, Microstructure of nickel aluminides formed in situ in aluminium matrix composites, Microchim Acta 145 (2004) 133–137.
DOI: 10.1007/s00604-003-0142-x
Google Scholar
[29]
C. J. Song, Z. M. Xu J. G. Li, In-situ Al/Al3Ni functionally graded materials by electromagnetic separation method, Mater. Sci. Eng. A 445–446 (2007)148–154.
DOI: 10.1016/j.msea.2006.09.009
Google Scholar
[30]
T. P. D. Rajan, R. M. Pillai, B. C. Pai, Functionally graded Al–Al3Ni in situ intermetallic composites: fabrication and microstructural characterization, J Alloys Compd 453 (2008) L4–7.
DOI: 10.1016/j.jallcom.2006.11.181
Google Scholar
[31]
Y. B. Choi, K. Matsugi, G. Sasaki, Manufacturing process of dispersed intermetallic compounds Al alloy composites by using porous nickel, J Compos Mater 48 (2014) 2289–2295.
DOI: 10.1177/0021998313497496
Google Scholar
[32]
G. Peng Z. Tietao, X. Xiaoqing, G. Zhi, C. Li, Refinement mechanism research of Al3Ni phase in Ni-7050 alloy, Rare Met. Mater. Eng. 42 (2013) 6–13.
DOI: 10.1016/s1875-5372(13)60028-4
Google Scholar
[33]
L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, (1976).
Google Scholar
[34]
W.S. Tait, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Pairodocs Publications, Wisconsin, (1994).
Google Scholar
[35]
W. R. Osório, L. C. Peixoto, M. V. Canté, A. Garcia, Microstructure features affecting mechanical properties and corrosion behaviour of a hypoeutectic Al–Ni alloy, Mater. Des. 31 (2010) 4485–4489.
DOI: 10.1016/j.matdes.2010.04.045
Google Scholar
[36]
C. Li, T. Liang, R. Ma, A. Du, Y. Fan, X. Zhao, X. Cao, Superhydrophobic surface containing cerium salt and organosilane for corrosion protection of galvanized steel, J. Alloys Compd, 825 (2020) 153921.
DOI: 10.1016/j.jallcom.2020.153921
Google Scholar