Fabrication and Mechanical Characterization of Polypropylene Clay Nanocomposites

Article Preview

Abstract:

Investigating the influence of process parameters is vital to improve the mechanical properties of nanoparticle reinforced polymer nanocomposites. In this effort, nanocomposites of polypropylene/nanoclay are prepared by the extrusion method. In order to characterize the mechanical behavior of nanocomposites over different compounding ratios, samples are prepared with 5 and 10 wt%. Effect of re-extrusion and PP-g-MA compatibilizer on the tensile performance of nanocomposites is evaluated at different strain rates. XRD evaluation of compounds indicated that re-extrusion is an important factor in increasing the exfoliation degree.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-113

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wu H, Fahy WP, Kim S, Kim H, Zhao N, Pilato L, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci. 2020; 111: 100638.

DOI: 10.1016/j.pmatsci.2020.100638

Google Scholar

[2] Saleh TA, Parthasarathy P, Irfan M. Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends in Environmental Analytical Chemistry. 2019; 24: e00067.

DOI: 10.1016/j.teac.2019.e00067

Google Scholar

[3] Connolly M, Zhang Y, Mahri S, Brown DM, Ortuño N, Jordá-Beneyto M, et al. The influence of organic modification on the cytotoxicity of clay particles to keratinocytes, hepatocytes and macrophages; an investigation towards the safe use of polymer-clay nanocomposite packaging. Food Chem Toxicol. 2019;126:178-91.

DOI: 10.1016/j.fct.2019.02.015

Google Scholar

[4] Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A. Preparation and Mechanical Properties of PolypropyleneClay Hybrids. Macromolecules. 1997;30:6333-8.

DOI: 10.1021/ma961786h

Google Scholar

[5] Zhang Q, Fu Q, Jiang L, Lei Y. Preparation and properties of polypropylene/montmorillonite layered nanocomposites. Polym Int. 2000;49(12):1561-4.

DOI: 10.1002/1097-0126(200012)49:12<1561::aid-pi509>3.0.co;2-t

Google Scholar

[6] Liu X, Wu Q. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer. 2001;42(25):10013-9.

DOI: 10.1016/s0032-3861(01)00561-4

Google Scholar

[7] Su S, Jiang DD, Wilkie CA. Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polym Degrad Stab. 2004;83(2):321-31.

DOI: 10.1016/s0141-3910(03)00277-5

Google Scholar

[8] Százdi L, Pukánszky Jr B, Vancso GJ, Pukánszky B. Quantitative estimation of the reinforcing effect of layered silicates in PP nanocomposites. Polymer. 2006;47(13):4638-48.

DOI: 10.1016/j.polymer.2006.04.053

Google Scholar

[9] Hong CK, Kim MJ, Oh SH, Lee YS, Nah C. Effects of polypropylene-g-(maleic anhydride/styrene) compatibilizer on mechanical and rheological properties of polypropylene/clay nanocomposites. Journal of Industrial and Engineering Chemistry. 2008; 14(2): 236-42.

DOI: 10.1016/j.jiec.2007.11.001

Google Scholar

[10] Baniasadi H, Ramazani S.A A, Javan Nikkhah S. Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Materials & Design. 2010;31(1):76-84.

DOI: 10.1016/j.matdes.2009.07.014

Google Scholar

[11] Dominkovics Z, Hári J, Kovács J, Fekete E, Pukánszky B. Estimation of interphase thickness and properties in PP/layered silicate nanocomposites. Eur Polym J. 2011;47(9):1765-74.

DOI: 10.1016/j.eurpolymj.2011.06.010

Google Scholar

[12] Liu S-P. Studies on morphology and mechanical properties of dispersing intercalated silane montmorillonite in polypropylene matrix. Polym Compos. 2011;32(9):1389-98.

DOI: 10.1002/pc.21162

Google Scholar

[13] Bagheri-Kazemabad S, Fox D, Chen Y, Geever LM, Khavandi A, Bagheri R, et al. Morphology, rheology and mechanical properties of polypropylene/ethyleneâ€"octene copolymer/clay nanocomposites: Effects of the compatibilizer. Compos Sci Technol. 2012;72:1697-704.

DOI: 10.1016/j.compscitech.2012.06.007

Google Scholar

[14] Domenech T, Peuvrel-Disdier E, Vergnes B. The importance of specific mechanical energy during twin screw extrusion of organoclay based polypropylene nanocomposites. Compos Sci Technol. 2013;75:7-14.

DOI: 10.1016/j.compscitech.2012.11.016

Google Scholar

[15] Silvano JdR, Rodrigues SA, Marini J, Bretas RES, Canevarolo SV, Carvalho BdM, et al. Effect of reprocessing and clay concentration on the degradation of polypropylene/ montmorillonite nanocomposites during twin screw extrusion. Polym Degrad Stab. 2013; 98(3): 801-8.

DOI: 10.1016/j.polymdegradstab.2012.12.009

Google Scholar

[16] Delva L, Ragaert K, Degrieck J, Cardon L. The Effect of Multiple Extrusions on the Properties of Montmorillonite Filled Polypropylene. Polymers. 2014;6(12):2912-27.

DOI: 10.3390/polym6122912

Google Scholar

[17] Tarapow J, Bernal C, Alvarez V. Mechanical properties of polypropylene/clay nanocomposites: effect of clay content, polymer/clay compatibility, and processing conditions. Journal of applied polymer science. 2009;111(2):768-78.

DOI: 10.1002/app.29066

Google Scholar

[18] Luo J-J, Daniel IM. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol. 2003;63(11):1607-16.

Google Scholar

[19] Dayma N, Jaggi HS, Satapathy BK. Post-yield crack toughness behavior of polyamide-6/polypropylene grafted maleic anhydride/nanoclay ternary nanocomposites. Materials & Design. 2013;49:303-10.

DOI: 10.1016/j.matdes.2013.01.011

Google Scholar

[20] Zhu TT, Zhou CH, Kabwe FB, Wu QQ, Li CS, Zhang JR. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science. 2019;169:48-66.

DOI: 10.1016/j.clay.2018.12.006

Google Scholar

[21] Remili C, Kaci M, Benhamida A, Bruzaud S, Grohens Y. The effects of reprocessing cycles on the structure and properties of polystyrene/Cloisite15A nanocomposites. Polym Degrad Stab. 2011;96(8):1489-96.

DOI: 10.1016/j.polymdegradstab.2011.05.005

Google Scholar

[22] Monjarás-Ávila AJ, Sanchez-Olivares G, Calderas F, Moreno L, Zamarripa-Calderón J-E, Cuevas-Suárez CE, et al. Sodium montmorillonite concentration effect on Bis-GMA/TEGDMA resin to prepare clay polymer nanocomposites for dental applications. Applied Clay Science. 2020;196:105755.

DOI: 10.1016/j.clay.2020.105755

Google Scholar

[23] Percival SJ, Melia MA, Alexander CL, Nelson DW, Schindelholz EJ, Spoerke ED. Nanoscale thin film corrosion barriers enabled by multilayer polymer clay nanocomposites. Surf Coat Technol. 2020;383:125228.

DOI: 10.1016/j.surfcoat.2019.125228

Google Scholar

[24] Lertwimolnun W, Vergnes B. Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer. 2005;46(10):3462-71.

DOI: 10.1016/j.polymer.2005.02.018

Google Scholar

[25] Shen L, Tjiu WC, Liu T. Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites. Polymer. 2005;46(25):11969-77.

DOI: 10.1016/j.polymer.2005.10.006

Google Scholar

[26] Weon JI, Sue HJ. Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer. 2005;46(17):6325-34.

DOI: 10.1016/j.polymer.2005.05.094

Google Scholar

[27] Díez-Pascual AM, Gómez-Fatou MA, Ania F, Flores A. Nanoindentation in polymer nanocomposites. Prog Mater Sci. 2015;67:1-94.

DOI: 10.1016/j.pmatsci.2014.06.002

Google Scholar

[28] Lan T, Kaviratna PD, Pinnavaia TJ. Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites. Chem Mater. 1995;7(11):2144-50.

DOI: 10.1021/cm00059a023

Google Scholar

[29] Treece MA, Oberhauser JP. Processing of polypropylene–clay nanocomposites: Single-screw extrusion with in-line supercritical carbon dioxide feed versus twin-screw extrusion. J Appl Polym Sci. 2007;103(2):884-92.

DOI: 10.1002/app.25226

Google Scholar

[30] Mittal V. In-situ Synthesis of Polymer Nanocomposites. In: Mittal V, editor. In-situ Synthesis of Polymer Nanocomposites. Weinheim, Germany: Wiley-VCH Verlag & Co; 2012. pp.1-24.

DOI: 10.1002/9783527640102.ch1

Google Scholar

[31] Zhang J, Wilkie CA. Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units. Polymer. 2006;47(16):5736-43.

DOI: 10.1016/j.polymer.2006.06.018

Google Scholar

[32] Zare Y, Rhee KY. Multistep modeling of Young's modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Composites Part A: Applied Science and Manufacturing. 2017; 102: 137-44.

DOI: 10.1016/j.compositesa.2017.08.004

Google Scholar

[33] Zare Y, Rhee KY. Modeling of interphase strength between polymer host and clay nanoparticles in nanocomposites by clay possessions and interfacial/interphase terms. Applied Clay Science. 2020;192:105644.

DOI: 10.1016/j.clay.2020.105644

Google Scholar

[34] Treece MA, Oberhauser JP. Processing of polypropylene–clay nanocomposites: Single‐screw extrusion with in‐line supercritical carbon dioxide feed versus twin‐screw extrusion. Journal of Applied Polymer Science. 2007;103(2):884-92.

DOI: 10.1002/app.25226

Google Scholar

[35] Zahedi M, Malekimoghadam R, Rafiee R, Icardi U. A study on fracture behavior of semi-elliptical 3D crack in clay-polymer nanocomposites considering interfacial debonding. Engineering Fracture Mechanics. 2019;209:245-59.

DOI: 10.1016/j.engfracmech.2019.01.031

Google Scholar