[1]
Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. 2010, Nitrogen-doped graphene and its application in electrochemical bio-sensing, ACS nano., 4, pp.1790-1798.
DOI: 10.1021/nn100315s
Google Scholar
[2]
Ren, Y.; Deng, H.; Shen, W.; Gao, Z. 2013, A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal. Chem., 85, pp.4784-4789.
DOI: 10.1021/ac400583e
Google Scholar
[3]
Alkhawaldeh A K, M.Krishan M, Altwaiq A, Dabaibeh R N. Preparation of Nanostructured/ Microplatinum Surfaces by Application of a Square Wave Potential Regime for Methanol Oxidation. Eurasian Journal of Analytical Chemistry. 2020; 15(1): emEJAC-00362.
Google Scholar
[4]
Lu, X. Q. Z., L.; Sun, P.; Yao, D. 2011, Thin-layer cyclic voltammetric studies electron transfer across liquid/liquid interface. Eur. J. Chem, 2, pp.120-124.
DOI: 10.5155/eurjchem.2.1.120-124.273
Google Scholar
[5]
Hourani, M.K. (2016). Synergistic Effects of Bismuth Adatoms on Electrocatalytic Properties of Electrodeposited Nanostructured Platinum Electrodes.
DOI: 10.20964/110434
Google Scholar
[6]
Wang, J.: Analytical Electrochemistry; Wiley-VCH Publishers, (2000).
Google Scholar
[7]
Grimm, B., 2001, Chlorophyll: Structure and Function. In eLS; Wiley Online Library.
Google Scholar
[8]
Scheer, H. 2006; An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R. J., Rüdiger, W., Scheer, H., Eds.; Springer Netherlands: Dordrecht, pp.1-26.
DOI: 10.1007/1-4020-4516-6_1
Google Scholar
[9]
Scheer, H. 1991, Structure and occurrence of chlorophylls.
Google Scholar
[10]
Tang, C.; Albrecht, A. 1975, Transient photovoltaic effects in metal–chlorophyll‐a–metal sandwich cells. J. Chem. Phys., 63, pp.953-961.
DOI: 10.1063/1.431403
Google Scholar
[11]
Altweiq, A. (2019). The Determination of Some Heavy Metals in Different Selected Diets. Eurasian Journal of Analytical Chemistry, 14(4), emEJAC-00326.
Google Scholar
[12]
Sur, U. K. 2011, A near-infrared light photosynthetic pigment. Curr. Sci., 100, p.286.
Google Scholar
[13]
Senge, M. O.; Smith, K. M.: 1995; Biosynthesis and structures of the bacteriochlorophylls. In Anoxygenic photosynthetic bacteria; Springer, pp.137-151.
DOI: 10.1007/0-306-47954-0_8
Google Scholar
[14]
Furukawa, Y.; Ishimori, K.; Morishima, I. 2000, Electron Transfer Reactions in Zn-Substituted Cytochrome P450cam. Biochemistry., 39, pp.10996-11004.
DOI: 10.1021/bi000874y
Google Scholar
[15]
Sakai, H.; Onuma, H.; Umeyama, M.; Takeoka, S.; Tsuchida, E. 2000, Photoreduction of Methemoglobin by Irradiation in the Near-Ultraviolet Region. Biochem., 39, pp.14595-14602.
DOI: 10.1021/bi0014204
Google Scholar
[16]
Humphrey, A. M. 1980, Chlorophyll. Food Chem., 5, pp.57-67.
Google Scholar
[17]
Chen, M.; Schliep, M.; Willows, R. D.; Cai, Z.-L.; Neilan, B. A.; Scheer, H. 2010, A red-shifted chlorophyll. Sci., 329, pp.1318-1319.
DOI: 10.1126/science.1191127
Google Scholar
[18]
Schwartz, S. J.; Lorenzo, T. V. 1990, Chlorophylls in foods. Crit. Rev. Food Sci. Nutr., 29, pp.1-17.
Google Scholar
[19]
Edwards, B. 1954, Treatment of chronic leg ulcers with ointment containing soluble chlorophyll. J. Physiother., 40, pp.177-179.
Google Scholar
[20]
Suslick, K. Kirk-Othmer, 1998, encyclopedia of chemical technology. J. Wiley&Sons: New York 26, pp.517-541.
Google Scholar
[21]
Al-Alwani, M. A. M.; Mohamad, A. B.; Kadhum, A. A. H.; Ludin, N. A. 2015, Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications. Acta Mol. Biomol. Spectrosc., 138, pp.130-137.
DOI: 10.1016/j.saa.2014.11.018
Google Scholar
[22]
Syafinar, R.; Gomesh, N.; Irwanto, M.; Fareq, M.; Irwan, Y. M. 2015, Chlorophyll Pigments as Nature Based Dye for Dye-Sensitized Solar Cell (DSSC). Energy Procedia., 79, pp.896-902.
DOI: 10.1016/j.egypro.2015.11.584
Google Scholar
[23]
Antohe, S.; Tugulea, L.; Gheorghe, V.; Ruxandra, V.; Caplanus, I.; Ion, L. 1996, Electrical and photovoltaic properties of ITO/chlorophyll a/TPyP/Al p–n junction cells. Status Solidi(a)., 153, pp.581-588.
DOI: 10.1002/pssa.2211530234
Google Scholar
[24]
Diarra, A.; Hotchandani, S.; Max, J. J.; Leblanc, R. M. 1986, Photovoltaic properties of mixed monolayers of chlorophyll a and carotenoid canthaxanthin. J. Chem.Soc.Faraday Trans.2., 82, pp.2217-2231.
DOI: 10.1039/f29868202217
Google Scholar
[25]
Del Giovine, L.; Fabietti, F. 2005, Copper chlorophyll in olive oils: identification and determination by LIF capillary electrophoresis. Food Control., 16, pp.267-272.
DOI: 10.1016/j.foodcont.2004.03.005
Google Scholar
[26]
Zvezdanović, J.; Marković, D. 2009, Copper, iron, and zinc interactions with chlorophyll in extracts of photosynthetic pigments studied by VIS spectroscopy. Russ.J. Phys.Chem.A., 83, pp.1542-1546.
DOI: 10.1134/s0036024409090222
Google Scholar
[27]
Tamiaki, H.; Yagai, S.; Miyatake, T. 1998, Synthetic zinc tetrapyrroles complexing with pyridine as a single axial ligand. Bioorg. Med. Chem. 6, pp.2171-2178.
DOI: 10.1016/s0968-0896(98)00154-0
Google Scholar
[28]
Li, F.; Gentemann, S.; Kalsbeck, W. A.; Seth, J.; Lindsey, J. S.; Holten, D.; Bocian, D. F. 1997, Effects of central metal ion (Mg, Zn) and solvent on singlet excited-state energy flow in porphyrin-based nanostructures. J. Mater. Chem., 7, pp.1245-1262.
DOI: 10.1039/a700146k
Google Scholar
[29]
Bube, R. H. 1960, Photoconductivity. Wiley Encyclopedia of Electrical and Electronics Engineering.
Google Scholar
[30]
Anthoe, S. 2002, Organic photovoltaic cells: a review. Rom. Rep. Phys., 53, pp.427-449.
Google Scholar
[31]
Chamberlain, G. 1983, Organic solar cells: A review. Sol. Cells., 8, pp.47-83.
Google Scholar
[32]
Tang, C. W.; Albrecht, A. C. 1975, Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells. J. Chem. Phys., 62, pp.2139-2149.
DOI: 10.1063/1.430780
Google Scholar
[33]
Mabrouki, M.; Oueriagli, A.; Outzourhit, A.; Ameziane, E.; Hotchandani, S.; LeBlanc, R. 2002, Dark signals and photovoltaic properties of Al/chlorophyll a/Ag cells. Phys. Status Solidi (a). 191, pp.345-354.
DOI: 10.1002/1521-396x(200205)191:1<345::aid-pssa345>3.0.co;2-n
Google Scholar
[34]
Kay, A.; Graetzel, M. 1993, Artificial photosynthesis.1.Photosensitization of TiO [sub 2] solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys.Chem.(United States)., 97.
DOI: 10.1021/j100125a029
Google Scholar
[35]
Oswal A. S., Birajdar M. R., Rady M. H., and Kale S. A., 2016, Study of Performance Analysis of Modern Materials for Transparent Thin Film Solar Cells. Edited Book: Renewable Energy Systems, Nova Science Publishers, New York, pp.53-66, ISBN: 978-153610441-7;978-153610423-3.
Google Scholar
[36]
Brabec, C. J. 2004, Organic photovoltaics: technology and market. Sol. Energy Mater. Sol. Cells., 83, pp.273-292.
Google Scholar
[37]
Kalowekamo, J.; Baker, E. 2009, Estimating the manufacturing cost of purely organic solar cells. Sol. Energy., 83, pp.1224-1231.
DOI: 10.1016/j.solener.2009.02.003
Google Scholar
[38]
Novak, I.; Komorsky-Lovrić, Š. 2012, Square-Wave Voltammetry of Sodium Copper Chlorophyllin on Glassy-Carbon and Paraffin-Impregnated Graphite Electrode. Electroanalysis., 24, pp.1957-1965.
DOI: 10.1002/elan.201200315
Google Scholar