Effect of TiOx and TiO2 Layer on the Photovoltaic Property of BiOI Films

Article Preview

Abstract:

This study aims to investigate the impact of mesoporous and compact layers, like TiO2 and TiOx on the photovoltaic performance of bismuth oxyiodide (BiOI) films. BiOI thin films were prepared using the spin-coating method for 10 cycles onto FTO glass, FTO/TiOx, FTO/TiO2, and a combination of FTO/TiOx-TiO2 layer. Then, the resulted films were characterized on their optical, structural, and photovoltaic properties. By adding the TiOx or TiO2 layer into the cell, it resulted in the shifting of UV-Visible absorbance to a longer wavelength. On the structural property analysis, Raman spectra showed an overlapping peak among TiOx, TiO2, and BiOI films. Moreover, the solar cell was successfully developed using iodine electrolyte and Pt-counter electrode. By the photovoltaic analysis, it was known that the combination of those layers of metal oxide nanomaterials could give a slight improvement on the short-current density and open-circuit voltage of BiOI thin films. Therefore, the overall BiOI photovoltaic parameter was enhanced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-378

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Xu, X. Yin, Y. Guo, Y. Pu, M. He, Ru-Doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance, J. Mater. Chem. C. 6 (17) (2018) 4746–4752.

DOI: 10.1039/c7tc05252a

Google Scholar

[2] A.A.B. Ruíz, Effect of Thin TiO2 Buffer Layer on the Performance of Plastic-based Dye-sensitized Solar Cells Using Indoline Dye. (2015).

DOI: 10.5796/electrochemistry.76.158

Google Scholar

[3] B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 353 (6346) (1991) 737–740.

DOI: 10.1038/353737a0

Google Scholar

[4] A. Hagfeldt, B. Didriksson, T. Palmqvist, H. Lindström, S. Södergren, H. Rensmo, S.-E. Lindquist, Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films, Sol. Energy Mater. Sol. Cells. 31 (4) (1994) 481–488.

DOI: 10.1016/0927-0248(94)90190-2

Google Scholar

[5] B. Li, X. Chen, T. Zhang, S. Jiang, G. Zhang, W. Wu, X. Ma, Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 p-n heterojunction photocatalysts for enhanced photocatalytic activity, Appl. Surf. Sci. (2018).

DOI: 10.1016/j.apsusc.2017.12.220

Google Scholar

[6] A.R. Zainun, S. Tomoya, U.M. Noor, M. Rusop, I. Masaya, New approach for generating Cu2O/TiO2 composite films for solar cell applications, Mater. Lett. 66 (1) (2012) 254–256.

DOI: 10.1016/j.matlet.2011.08.032

Google Scholar

[7] L.M. Fraas, Y. Ma, CdS thin films for terrestrial solar cells, J. Cryst. Growth. 39 (1) (1977) 92–107.

DOI: 10.1016/0022-0248(77)90157-9

Google Scholar

[8] A. Munshi, W. Sampath, CdTe photovoltaics for sustainable electricity generation, J. Electron. Mater. 45 (9) (2016) 4612–4619.

DOI: 10.1007/s11664-016-4484-7

Google Scholar

[9] Q. Zhang, F. Hao, J. Li, Y. Zhou, Y. Wei, H. Lin, Perovskite solar cells: must lead be replaced–and can it be done? Sci. Technol. Adv. Mater. 19 (1) (2018) 425–442.

DOI: 10.1080/14686996.2018.1460176

Google Scholar

[10] W.F. Yao, X.H. Xu, H. Wang, J.T. Zhou, X.N. Yang, Y. Zhang, S.X. Shang, B.B. Huang, Photocatalytic property of perovskite bismuth titanate, Appl. Catal. B Environ. 52 (2) (2004) 109–116.

DOI: 10.1016/j.apcatb.2004.04.002

Google Scholar

[11] H. Cheng, B. Huang, K. Yang, Z. Wang, X. Qin, X. Zhang, Y. Dai, Facile template-free synthesis of Bi2O2CO3 hierarchical microflowers and their associated photocatalytic activity, ChemPhysChem. 11 (10) (2010) 2167–2173.

DOI: 10.1002/cphc.200901017

Google Scholar

[12] H. Cheng, B. Huang, J. Lu, Z. Wang, B. Xu, X. Qin, X. Zhang, Y. Dai, Synergistic effect of crystal and electronic structures on the visible-light-driven photocatalytic performances of Bi2O3 polymorphs, Phys. Chem. Chem. Phys. 12 (47) (2010) 15468–15475.

DOI: 10.1039/c0cp01189d

Google Scholar

[13] X. Lin, S.S. Jiang, Z. Lin, M. Wang, Y.S. Yan, The influence of g-C3N4 loading on the photocatalytic activity of Bi12O17Br2/Bi2O3 composite in the phenol red degradation, IOP Conf. Ser. Mater. Sci. Eng. 137 (1) (2016) 012020.

DOI: 10.1088/1757-899x/137/1/012020

Google Scholar

[14] R.L.Z. Hoye, L.C. Lee, R.C. Kurchin, T.N. Huq, K.H.L. Zhang, M. Sponseller, L. Nienhaus, R.E. Brandt, J. Jean, J.A. Polizzotti, A. Kursumović, M.G. Bawendi, V. Bulović, V. Stevanović, T. Buonassisi, J.L. MacManus-Driscoll, Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI), Adv. Mater. 29 (36) (2017) 1–10.

DOI: 10.1002/adma.201702176

Google Scholar

[15] A.A. Putri, A.A. Abuelwafa, S. Kato, N. Kishi, T. Soga, A simple spin-assisted SILAR of bismuth oxyiodide films preparation for photovoltaic application, SN Appl. Sci. 2 (1) (2020) 1–8.

DOI: 10.1007/s42452-019-1913-2

Google Scholar

[16] A.A. Putri, S. Kato, N. Kishi, T. Soga, Relevance of precursor molarity in the prepared bismuth oxyiodide films by successive ionic layer adsorption and reaction for solar cell application, J. Sci. Adv. Mater. Devices. 4 (1) (2019) 116–124.

DOI: 10.1016/j.jsamd.2019.01.007

Google Scholar

[17] K. Wang, F. Jia, Z. Zheng, L. Zhang, Crossed BiOI flake array solar cells, Electrochem. Commun. 12 (12) (2010) 1764–1767.

DOI: 10.1016/j.elecom.2010.10.017

Google Scholar

[18] L. Zhao, X. Zhang, C. Fan, Z. Liang, P. Han, First-principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals, Phys. B Condens. Matter. 407 (17) (2012) 3364–3370.

DOI: 10.1016/j.physb.2012.04.039

Google Scholar

[19] Y. Park, Y. Na, D. Pradhan, B.K. Min, Y. Sohn, Adsorption and UV/Visible photocatalytic performance of BiOI for methyl orange, Rhodamine B and methylene blue: Ag and Ti-loading effects, CrystEngComm. 16 (15) (2014) 3155–3167.

DOI: 10.1039/c3ce42654h

Google Scholar

[20] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Novel heterostructured Bi2S3/BiOI photocatalyst: Facile preparation, characterization and visible light photocatalytic performance, Dalt. Trans. 41 (37) (2012) 11482–11490.

DOI: 10.1039/c2dt30883e

Google Scholar

[21] M. Long, P. Hu, H. Wu, Y. Chen, B. Tan, W. Cai, Understanding the composition and electronic structure dependent photocatalytic performance of bismuth oxyiodides, J. Mater. Chem. A. 3 (10) (2015) 5592–5598.

DOI: 10.1039/c4ta06134a

Google Scholar

[22] W. Fan, H. Li, F. Zhao, X. Xiao, Y. Huang, H. Ji, Y. Tong, Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes, Chem. Commun. 52 (30) (2016) 5316–5319.

DOI: 10.1039/c6cc00903d

Google Scholar

[23] M. Fang, H. Jia, W. He, Y. Lei, L. Zhang, Z. Zheng, Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi2S3 heterojunction films, Phys. Chem. Chem. Phys. 17 (20) (2015) 13531–13538.

DOI: 10.1039/c4cp05749j

Google Scholar

[24] Y. Lei, L.D. Zhang, J.C. Fan, Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3, Chem. Phys. Lett. 338 (4–6) (2001) 231–236.

DOI: 10.1016/s0009-2614(01)00263-9

Google Scholar

[25] R. He, J. Zhang, J. Yu, S. Cao, Room-temperature synthesis of BiOI with tailorable (001) facets and enhanced photocatalytic activity, J. Colloid Interface Sci. 478 (2016) 201–208.

DOI: 10.1016/j.jcis.2016.06.012

Google Scholar