[1]
Awschalom, D. and N. Samarth, 2009, Spintronics without Magnetism, Physics 2, 50 (2009).
DOI: 10.1103/physics.2.50
Google Scholar
[2]
Kato, Y., Myers, R. C., Driscoll, C. D., Gossard, A. C., Levy, J. and Awschalom, D. D, 2003, Gigahertz Electron Spin Manipulation Using Voltage-Controlled G-Tensor Modulation, Science, 299 (February), p.1201–1205.
DOI: 10.1126/science.1080880
Google Scholar
[3]
Manchon, A., H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine , 2015, New Perspectives for Rashba Spin-Orbit Coupling,.
DOI: 10.1038/nmat4360
Google Scholar
[4]
Kuhlen, S., K. Schmalbuch, M. Hagedorn, P. Schlammes, M. Patt, M. Leesa, G. Güntherodt, and B. Beschoten, 2012, Electric Field-Driven Coherent Spin Reorientation of Optically Generated Electron Spin Packets in InGaAs. Phys. Rev. Lett. 109, 146603.
DOI: 10.1103/physrevlett.109.146603
Google Scholar
[5]
Ando, Y., 2013, Topological Insulator Materials, J. Phys. Soc. Jpn. 82, 102001,.
Google Scholar
[6]
Datta, S. and Das, B., 1990, Electronic Analog of The Electro‐Optic Modulator, Applied Physics Letters, 56(7), p.665–667,.
DOI: 10.1063/1.102730
Google Scholar
[7]
Žutić, I., J. Fabian, and S. D. Sarma, 2004, Spintronics: Fundamentals and Applications, Rev. Mod. Phys.76, 323.
DOI: 10.1103/revmodphys.76.323
Google Scholar
[8]
Palummo, M., C. M. Bertoni, L. Reining, and F. Finocchi, 1993, The Electronic Structure of Gallium Nitride. Physica B 185 (1993) 404-409.
DOI: 10.1016/0921-4526(93)90269-c
Google Scholar
[9]
Stampfl, C. and C. G. Van de Walle. 1999. Density-Functional Calculations For III-V Nitrides using The Local-Density Approximation and The Generalized Gradient Approximation, Phys. Rev. B 59, 5521.
DOI: 10.1103/physrevb.59.5521
Google Scholar
[10]
Esquivel-Sirvent, R. and Cecilia Noguez, 1998, Electron energy loss for anisotropic systems: Application to GaN 1010. Phys. Rev. B 58, 7367,.
DOI: 10.1103/physrevb.58.7367
Google Scholar
[11]
Chen, Chen., Mitra Dutta and Michael A. Stroscio, 2004, Electron scattering via interactions with optical phonons in wurtzite crystals, Phys. Rev. B 70, 075316.
DOI: 10.1103/physrevb.70.075316
Google Scholar
[12]
Lu, Ming-Pei., Chieh-Wei Chen and Ming-Yen Lu, 2016, Charge-Separation Kinetics of Photoexcited Oxygen Vacancies in ZnO Nanowire Field-Effect Transistors, Physical Review Applied 6, 054018.
DOI: 10.1103/physrevapplied.6.054018
Google Scholar
[13]
Lü, T. and J. C. Cao, 2005, Confined optical phonon modes and electron-phonon interactions in wurtzite GaN/ZnO quantum wells J, Phys. Rev. B 71, 155304 s2005d.
DOI: 10.1103/physrevb.68.165335
Google Scholar
[14]
Schmidt, W. G., M. D. Neumann, E. Speiser and N. Esser, 2015, GaN m-plane: Atomic structure, surface bands, and optical response, Phys. Rev. B 91, 035302.
DOI: 10.1103/physrevb.91.035302
Google Scholar
[15]
Botsch, L., I. Lorite, Y. Kumar, and P. Esquinazi, 2017, Indirect Experimental Evidence of A Persistent Spin Helix in H + Implanted Li-Doped ZnO By Photogalvanic Spectroscopy, Physical Review B 95, 201405(R),.
DOI: 10.1103/physrevb.95.201405
Google Scholar
[16]
Kozulin, A. S. and A. I. Malyshev, 2019, General Condition for Realizing A Collinear Spin-Orbit Effective Magnetic Field in Two-Dimensional Electron Systems and Its Application to Zinc-Blende and Wurtzite Quantum Wells, Phys. Rev. B 99, 035305,.
DOI: 10.1103/physrevb.99.035305
Google Scholar
[17]
Bychkov, Yu A. and E.I Rashba, 1984, Properties of a 2D Electron Gas with Lifted Spectral Degeneracy, JETP Letter Vol 39 No. 2.
Google Scholar
[18]
Absor, MAU., F Ishii, H Kotaka, and M Saito, 2015, Persistent Spin Helix on Wurtzite ZnO Surface: First-Principles Density-Functional Study, Applied Physics Express 8 (7), 073006.
DOI: 10.7567/apex.8.073006
Google Scholar
[19]
Perdew, J.P., K. Burke, M. Ernzerhof, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[20]
Ozaki, T, H. Kino, J. Yu, M.J. Han, M. Ohfuchi, F. Ishii, K. Sawada, Y. Kubota, Y.P. Mizuta, T. Ohwaki, T.V.T Duy, H. Weng, M. Toyoda, Y. Okuno, R. Perez, P.P. Bell, M. Ellner, Y. Xiao, A.M. Ito, M. Kawamura, K. Yoshimi, C.-C. Lee, and K. Terakura, 2016, User's manual of OpenMX Ver. 3.8. http://www.openmx-square.org/.
Google Scholar
[21]
Troullier, N and Jose Lurs Martins, 1991, Efficient Pseudopotentials for Plane-wave Calculation, Phys. Rev. B 8 Volume 43, Number 3, 1993 (1991).
DOI: 10.1103/physrevb.43.1993
Google Scholar
[22]
Ozaki, T and H. Kino, 2004, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B 69, 195113.
DOI: 10.1103/physrevb.69.195113
Google Scholar
[23]
Ozaki, T, 2003, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B 67, 155108.
DOI: 10.1103/physrevb.67.155108
Google Scholar
[24]
Gil, B., 2014, Physics of Wurtzite Nitrides and Oxides: Passport to Devices, Oxford University Press.
Google Scholar
[25]
Kartzel, H, W. Pretzel, M. Kofferlein, W. Sciessi, M. Steiner, U. Hiller, G.M Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwartz, and M.P Pasternak, 1996, Lattice dynamics and hyperfine interactions s in ZnO and ZnSe at high external pressures, Phys. Rev. B Volume 53, Number 17,.
DOI: 10.1103/physrevb.53.11425
Google Scholar
[26]
M. Catti, Y. Noel, and R. Dovesi, 2003, Full Piezoelectric Tensors of Wurtzite and Zinc-Blende ZnO and ZnS by First-Principles Calculations. Journal of Physics and Chemistry of Solids 64 2183–2190.
DOI: 10.1016/s0022-3697(03)00219-1
Google Scholar
[27]
L. Weston, X. Y. Cui, B. Delley, dan C. Stampfl, 2012, Band Offsets and Polarization Effects in Wurtzite ZnO/Mg 0.25 Zn 0.75 O Superlattices From First Principles. Phys. Rev. B 86, 205322.
DOI: 10.1103/physrevb.86.205322
Google Scholar
[28]
Silva, W. S., C. Stiehler, E. A. Soares, E. M. Bittar, J. C. Cezar, H. Kuhlenbeck, H. J. Freund, E. Cisternas, and F. Stavale, 2018, Hydrogen-Induced Metallization on The ZnO (0001) Surface, Phys. Rev. B 98, 155416.
DOI: 10.1103/physrevb.98.155416
Google Scholar
[29]
Kuykendall, T., P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbully, J. Denlinger and P.Yang, 2004, Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays, Nature Materials Vol. 3.
DOI: 10.1038/nmat1177
Google Scholar
[30]
Jaffe, J. E., R. Pandey and P. Zapol, 1996, Ab Initio Prediction of Gan (101̄0) and (110) Anomalous Surface Relaxation, Phys. Rev. B Volume 53, Number 8.
Google Scholar
[31]
Hellström, M., D. Spångberg, K. Hermansson, dan P. Broqvist, 2012, Cu Dimer Formation Mechanism on The ZnO(101̄0) Surface, Phys. Rev. B 86, 235302. DOI:.
DOI: 10.1103/physrevb.86.235302
Google Scholar
[32]
Supatukul, C., S. Pramchu, A.P. Jaroenjittichai, Y. Laosiritaworn, 2016, Density Functional Theory Investigation of Surface Defects in Sn-doped ZnO, Surface and Coatings Technology Volume 298,.
DOI: 10.1016/j.surfcoat.2016.04.013
Google Scholar
[33]
Qi, L., Y. Qi, Z. Chai, Y.Q.M. Hellström, D. Spångberg, K. Hermansson, dan P Broqvist, 2019, Post-Annealing Induced Oxygen Vacancy Mediated NonPolar ZnO Films With Excellent Optoelectronic Performance, Ceramics International 45, 8388-8394.
DOI: 10.1016/j.ceramint.2019.01.147
Google Scholar
[34]
Lee, W. J. dan Y.S. Kim, 2011, Dimer-Vacancy Reconstructions of the GaN and ZnO(101̄1) Surfaces: Density Functional Theory Calculations, Physical Review B 84, 115318.
Google Scholar
[35]
Moshfegh, A. Z., H.V. Kanel, S.C. Kashyap, M. Wuttig, 2003, Proceedings of the International Workshop on Physics and Technology of Thin Films I W T F. World Scientific Publishing Co. Pte. Ltd.
Google Scholar
[36]
Cotton, F. A., 1990, Chemical Applications of Group Theory, A Wiley-Interscience Publication.
Google Scholar
[37]
Tamborenea, Pablo I., Thomas Wellens, Dietmar Weinmann, and Rodolfo A. Jalabert, 2017, Spin-relaxation time in the impurity band of wurtzite semiconductors, Phys. Rev. B 96, 125205.
DOI: 10.1103/physrevb.96.125205
Google Scholar