Effect of Thin Film Thickness on the Electronic Properties of Wurtzite Structure (ZnO and GaN): A Density Functional Theory Study

Article Preview

Abstract:

By using first-principle density-functional theory (DFT) calculations supplemented with symmetry analysis, we investigated the effect of thin-film thickness on the electronic properties of non-polar ( ZnO-wz and GaN-wz. We find that the electronic band structures of thin-film non-polar ( surface with layer variations from two until ten bilayers show the Rashba spin splitting. Importantly, we revealed that this splitting is found to be strongly anisotropic observed in the valence band maximum (VBM) around the Γ point. We clarified the origin of the anisotropic spin splitting in the electronic band structures by considering the point-group symmetry (PGS) of the present system. We found that the changes of the PGS from C6v (for polar [0001] direction) to Cs (for non-polar ( direction) are responsible for inducing the anisotropic of the spin splitting. To further confirm the anisotropic splitting, we calculated the Rashba spin splitting parameters for different directions of the k-path. We found that these parameters are different in magnitude for a different direction of the k-path indicating the anisotropic spin splitting quantitatively, which is consistent well with symmetry analysis. Finally, we conclude that the observed Rashba spin splitting in the wurtzite surface structure is promising for spintronics applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

394-404

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Awschalom, D. and N. Samarth, 2009, Spintronics without Magnetism, Physics 2, 50 (2009).

DOI: 10.1103/physics.2.50

Google Scholar

[2] Kato, Y., Myers, R. C., Driscoll, C. D., Gossard, A. C., Levy, J. and Awschalom, D. D, 2003, Gigahertz Electron Spin Manipulation Using Voltage-Controlled G-Tensor Modulation, Science, 299 (February), p.1201–1205.

DOI: 10.1126/science.1080880

Google Scholar

[3] Manchon, A., H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine , 2015, New Perspectives for Rashba Spin-Orbit Coupling,.

DOI: 10.1038/nmat4360

Google Scholar

[4] Kuhlen, S., K. Schmalbuch, M. Hagedorn, P. Schlammes, M. Patt, M. Leesa, G. Güntherodt, and B. Beschoten, 2012, Electric Field-Driven Coherent Spin Reorientation of Optically Generated Electron Spin Packets in InGaAs. Phys. Rev. Lett. 109, 146603.

DOI: 10.1103/physrevlett.109.146603

Google Scholar

[5] Ando, Y., 2013, Topological Insulator Materials, J. Phys. Soc. Jpn. 82, 102001,.

Google Scholar

[6] Datta, S. and Das, B., 1990, Electronic Analog of The Electro‐Optic Modulator, Applied Physics Letters, 56(7), p.665–667,.

DOI: 10.1063/1.102730

Google Scholar

[7] Žutić, I., J. Fabian, and S. D. Sarma, 2004, Spintronics: Fundamentals and Applications, Rev. Mod. Phys.76, 323.

DOI: 10.1103/revmodphys.76.323

Google Scholar

[8] Palummo, M., C. M. Bertoni, L. Reining, and F. Finocchi, 1993, The Electronic Structure of Gallium Nitride. Physica B 185 (1993) 404-409.

DOI: 10.1016/0921-4526(93)90269-c

Google Scholar

[9] Stampfl, C. and C. G. Van de Walle. 1999. Density-Functional Calculations For III-V Nitrides using The Local-Density Approximation and The Generalized Gradient Approximation, Phys. Rev. B 59, 5521.

DOI: 10.1103/physrevb.59.5521

Google Scholar

[10] Esquivel-Sirvent, R. and Cecilia Noguez, 1998, Electron energy loss for anisotropic systems: Application to GaN 1010. Phys. Rev. B 58, 7367,.

DOI: 10.1103/physrevb.58.7367

Google Scholar

[11] Chen, Chen., Mitra Dutta and Michael A. Stroscio, 2004, Electron scattering via interactions with optical phonons in wurtzite crystals, Phys. Rev. B 70, 075316.

DOI: 10.1103/physrevb.70.075316

Google Scholar

[12] Lu, Ming-Pei., Chieh-Wei Chen and Ming-Yen Lu, 2016, Charge-Separation Kinetics of Photoexcited Oxygen Vacancies in ZnO Nanowire Field-Effect Transistors, Physical Review Applied 6, 054018.

DOI: 10.1103/physrevapplied.6.054018

Google Scholar

[13] Lü, T. and J. C. Cao, 2005, Confined optical phonon modes and electron-phonon interactions in wurtzite GaN/ZnO quantum wells J, Phys. Rev. B 71, 155304 s2005d.

DOI: 10.1103/physrevb.68.165335

Google Scholar

[14] Schmidt, W. G., M. D. Neumann, E. Speiser and N. Esser, 2015, GaN m-plane: Atomic structure, surface bands, and optical response, Phys. Rev. B 91, 035302.

DOI: 10.1103/physrevb.91.035302

Google Scholar

[15] Botsch, L., I. Lorite, Y. Kumar, and P. Esquinazi, 2017, Indirect Experimental Evidence of A Persistent Spin Helix in H + Implanted Li-Doped ZnO By Photogalvanic Spectroscopy, Physical Review B 95, 201405(R),.

DOI: 10.1103/physrevb.95.201405

Google Scholar

[16] Kozulin, A. S. and A. I. Malyshev, 2019, General Condition for Realizing A Collinear Spin-Orbit Effective Magnetic Field in Two-Dimensional Electron Systems and Its Application to Zinc-Blende and Wurtzite Quantum Wells, Phys. Rev. B 99, 035305,.

DOI: 10.1103/physrevb.99.035305

Google Scholar

[17] Bychkov, Yu A. and E.I Rashba, 1984, Properties of a 2D Electron Gas with Lifted Spectral Degeneracy, JETP Letter Vol 39 No. 2.

Google Scholar

[18] Absor, MAU., F Ishii, H Kotaka, and M Saito, 2015, Persistent Spin Helix on Wurtzite ZnO Surface: First-Principles Density-Functional Study, Applied Physics Express 8 (7), 073006.

DOI: 10.7567/apex.8.073006

Google Scholar

[19] Perdew, J.P., K. Burke, M. Ernzerhof, 1996, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[20] Ozaki, T, H. Kino, J. Yu, M.J. Han, M. Ohfuchi, F. Ishii, K. Sawada, Y. Kubota, Y.P. Mizuta, T. Ohwaki, T.V.T Duy, H. Weng, M. Toyoda, Y. Okuno, R. Perez, P.P. Bell, M. Ellner, Y. Xiao, A.M. Ito, M. Kawamura, K. Yoshimi, C.-C. Lee, and K. Terakura, 2016, User's manual of OpenMX Ver. 3.8. http://www.openmx-square.org/.

Google Scholar

[21] Troullier, N and Jose Lurs Martins, 1991, Efficient Pseudopotentials for Plane-wave Calculation, Phys. Rev. B 8 Volume 43, Number 3, 1993 (1991).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[22] Ozaki, T and H. Kino, 2004, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B 69, 195113.

DOI: 10.1103/physrevb.69.195113

Google Scholar

[23] Ozaki, T, 2003, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B 67, 155108.

DOI: 10.1103/physrevb.67.155108

Google Scholar

[24] Gil, B., 2014, Physics of Wurtzite Nitrides and Oxides: Passport to Devices, Oxford University Press.

Google Scholar

[25] Kartzel, H, W. Pretzel, M. Kofferlein, W. Sciessi, M. Steiner, U. Hiller, G.M Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwartz, and M.P Pasternak, 1996, Lattice dynamics and hyperfine interactions s in ZnO and ZnSe at high external pressures, Phys. Rev. B Volume 53, Number 17,.

DOI: 10.1103/physrevb.53.11425

Google Scholar

[26] M. Catti, Y. Noel, and R. Dovesi, 2003, Full Piezoelectric Tensors of Wurtzite and Zinc-Blende ZnO and ZnS by First-Principles Calculations. Journal of Physics and Chemistry of Solids 64 2183–2190.

DOI: 10.1016/s0022-3697(03)00219-1

Google Scholar

[27] L. Weston, X. Y. Cui, B. Delley, dan C. Stampfl, 2012, Band Offsets and Polarization Effects in Wurtzite ZnO/Mg 0.25 Zn 0.75 O Superlattices From First Principles. Phys. Rev. B 86, 205322.

DOI: 10.1103/physrevb.86.205322

Google Scholar

[28] Silva, W. S., C. Stiehler, E. A. Soares, E. M. Bittar, J. C. Cezar, H. Kuhlenbeck, H. J. Freund, E. Cisternas, and F. Stavale, 2018, Hydrogen-Induced Metallization on The ZnO (0001) Surface, Phys. Rev. B 98, 155416.

DOI: 10.1103/physrevb.98.155416

Google Scholar

[29] Kuykendall, T., P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbully, J. Denlinger and P.Yang, 2004, Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays, Nature Materials Vol. 3.

DOI: 10.1038/nmat1177

Google Scholar

[30] Jaffe, J. E., R. Pandey and P. Zapol, 1996, Ab Initio Prediction of Gan (101̄0) and (110) Anomalous Surface Relaxation, Phys. Rev. B Volume 53, Number 8.

Google Scholar

[31] Hellström, M., D. Spångberg, K. Hermansson, dan P. Broqvist, 2012, Cu Dimer Formation Mechanism on The ZnO(101̄0) Surface, Phys. Rev. B 86, 235302. DOI:.

DOI: 10.1103/physrevb.86.235302

Google Scholar

[32] Supatukul, C., S. Pramchu, A.P. Jaroenjittichai, Y. Laosiritaworn, 2016, Density Functional Theory Investigation of Surface Defects in Sn-doped ZnO, Surface and Coatings Technology Volume 298,.

DOI: 10.1016/j.surfcoat.2016.04.013

Google Scholar

[33] Qi, L., Y. Qi, Z. Chai, Y.Q.M. Hellström, D. Spångberg, K. Hermansson, dan P Broqvist, 2019, Post-Annealing Induced Oxygen Vacancy Mediated NonPolar ZnO Films With Excellent Optoelectronic Performance, Ceramics International 45, 8388-8394.

DOI: 10.1016/j.ceramint.2019.01.147

Google Scholar

[34] Lee, W. J. dan Y.S. Kim, 2011, Dimer-Vacancy Reconstructions of the GaN and ZnO(101̄1) Surfaces: Density Functional Theory Calculations, Physical Review B 84, 115318.

Google Scholar

[35] Moshfegh, A. Z., H.V. Kanel, S.C. Kashyap, M. Wuttig, 2003, Proceedings of the International Workshop on Physics and Technology of Thin Films I W T F. World Scientific Publishing Co. Pte. Ltd.

Google Scholar

[36] Cotton, F. A., 1990, Chemical Applications of Group Theory, A Wiley-Interscience Publication.

Google Scholar

[37] Tamborenea, Pablo I., Thomas Wellens, Dietmar Weinmann, and Rodolfo A. Jalabert, 2017, Spin-relaxation time in the impurity band of wurtzite semiconductors, Phys. Rev. B 96, 125205.

DOI: 10.1103/physrevb.96.125205

Google Scholar