[1]
Fayomi, O.S.I, Oluwadare, G.A, Fakehinde, O.B, Akande, I.G, Nwachia, W, Oziegbe, U, & Russell, A.J. (2019). Evolution of physical and mechanical characteristics of deposited composite coatings on A356 mild steel. The International Journal of Advanced Manufacturing Technology, 103(5-8), 2621-2625.
DOI: 10.1007/s00170-019-03714-1
Google Scholar
[2]
Lee C K (2012). Tribology international wear and corrosion behavior of electrodeposited nickel –carbon nanotube composite coatings on Ti – 6Al – 4V alloy in Hanks solution. Tribology International, 55, 7–14.
DOI: 10.1016/j.triboint.2012.05.024
Google Scholar
[3]
Tuaweri, T.J. & Wilcox G.D, (2006) Behavior of Zn-SiO2 Electro deposition in the presence of N, N-dimethyldodecylamine. Surface and Coating Technology, 200, 5921-5930.
DOI: 10.1016/j.surfcoat.2005.09.023
Google Scholar
[4]
Espitia-Cabrera I, Orozco-Hernández H, Torres-Sanchez R, Contreras-Garcia M E, Bartolo Perez P, Martinez L (2003). Synthesis of nanostructured zirconia electrodeposited films on AISI 316L stainless steel and its behavior in corrosion resistance assessment. Journal of Materials Letters, 58, 191-195.
DOI: 10.1016/s0167-577x(03)00443-9
Google Scholar
[5]
Popoola A P I, Aigbodion V S, Fayomi O S I (2016). Surface characterization, mechanical properties and corrosion behaviour of ternary based Zn-ZnO-SiO2 composite coating of mild steel. Journal of Alloys and Compounds, 654, 561–566.
DOI: 10.1016/j.jallcom.2015.09.090
Google Scholar
[6]
Ranganatha, S, Venkatesha, T.V, Vathsala, K. & Kumar P.M.K. (2012). Electrochemical studies on Zn/Nano-CeO2 electrodeposited composite coatings. Journal of Surface & Coatings Technology, 208, 64–72.
DOI: 10.1016/j.surfcoat.2012.08.004
Google Scholar
[7]
Chou T P, Chandrasekaran C, Limmer S J, Seraji S, Wu Y, Forbess M J, Cao G Z (2001). Organic-inorganic hybrid coatings for corrosion protection. Journal of Non Crystalline Solids, 290(2-3), 153-162.
DOI: 10.1016/s0022-3093(01)00818-3
Google Scholar
[8]
Soares C G, Garbatov Y, Zayed A, Wang G (2009). Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corrosion Science, 51, 2014-2026.
DOI: 10.1016/j.corsci.2009.05.028
Google Scholar
[9]
Olivares-Xometl O, Likhanova N V, Nava N, Prieto A C, Lijanova I V, Escobedo-Morales A, López-Aguilar C (2013). Thiadiazoles as corrosion inhibitors for carbon steel in H2SO4 solutions. International Journal of Electrochemical Science, 8, 735 – 752.
Google Scholar
[10]
Yu S R., Liu Y, Li W, Liu J.A, Yuan D.S. (2012). The running-in tribological behavior of nano-SiO2/Ni composite coatings. Composites: Part B, 43, 1070-1076.
DOI: 10.1016/j.compositesb.2011.08.033
Google Scholar
[11]
Fayomi O S I, Akande I G, Oluwole O O, Daramola D (2018). Effect of water soluble chitosan on the electrochemical corrosion behaviour of mild steel. Chemical Data Collections, 17, 321-326.
DOI: 10.1016/j.cdc.2018.10.006
Google Scholar
[12]
Jiang L, Volovitch P, Wolpers M, Ogle K (2012). Activation and inhibition of Zn, Al and Zn-Al-Mg coatings on steel by nitrate in phosphoric acid solution. Journal of Science Corrosion, 60, 256-264.
DOI: 10.1016/j.corsci.2012.03.028
Google Scholar
[13]
Akande I G, Fayomi O.S.I, Oluwole O.O. (2019). Performance of composite coating on carbon steel–a necessity. Energy Procedia, 157, 375-383.
DOI: 10.1016/j.egypro.2018.11.202
Google Scholar
[14]
Arici M., Nazir H, Aksu M L (2011). Investigation of Sn–Zn electrodeposition from acidic bath on EQCM. Journal of Alloys and Compounds, 509(5), 1534-1537.
DOI: 10.1016/j.jallcom.2010.10.161
Google Scholar
[15]
Panagopoulos C N, Georgiou E P, Tsoutsouva M G, Krompa M (2011). Composite multilayered coatings on mild steel. Journal of Coating Technology Research, 8, 125-133.
DOI: 10.1007/s11998-010-9278-x
Google Scholar
[16]
Yang G, Chai S, Xiong X, Zhang S, Yu L, Zhang P (2012). Preparations and tribological properties of surface modified cu nanoparticles. Transactional Non Ferrous Metals Society of China, 22, 366-372.
DOI: 10.1016/s1003-6326(11)61185-0
Google Scholar
[17]
Fingsgar M, Jackson J (2014). Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review, Corrosion Science, 86, 17-41.
DOI: 10.1016/j.corsci.2014.04.044
Google Scholar
[18]
Akande, I G, Oluwole, O O, & Fayomi, O S I (2019). Optimizing the defensive characteristics of mild steel via the electrodeposition of ZnSi3N4 reinforcing particles. Defence Technology, 15(4), 526-532.
DOI: 10.1016/j.dt.2018.11.001
Google Scholar
[19]
Dong Z, Peng X, Guan Y, Li L, Wang F (2012). Optimization of composition and structure of electrodeposited Ni-Cr composites for increasing the oxidation resistance. Corrosion Science, 62, 147-152.
DOI: 10.1016/j.corsci.2012.05.010
Google Scholar
[20]
Fayomi, O S I (2015). Effect of composite particulate reinforcement on the morphology, anti-corrosion and hardness properties of fabricated Zn-ZnO coatings. Journal of Materials and Environmental Science, 6, 963-968.
Google Scholar