Inhibitive Characteristics of Cefalexin Drug Addition on Corrosion Evolution of Mild Steel in Chloride Medium

Article Preview

Abstract:

The inhibition effect of Cefalexin on the corrosion of mild steel in sodium chloride has been examined with the use of weight loss and potentiodynamic polarization methods at ambient temperature. Cefalexin showed good protection ability by adsorbing on the mild steel surface. The mixed inhibition characteristics of Cefalexin were revealed by the Potentiodynamic polarization results. The inhibitor efficiency was found to be above 65% obeying the Langmuir and Freundlich isotherm law with correlation regression coefficients of R2 = 0.9984 and R2 = 0.9488, respectively. The closeness of these R2 values to unity established the reliability of Cefalexin as an inhibitor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-125

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Verma, C., Haque, J., Quraishi, M. A., & Ebenso, E. E. (2019). Aqueous phase environmental friendly organic corrosion inhibitors derived from one step multicomponent reactions: a review. Journal of Molecular Liquids, 275, 18-40.

DOI: 10.1016/j.molliq.2018.11.040

Google Scholar

[2] Fayomi, O.S.I., Akande, I.G., & Nsikak, U. (2019). An overview of corrosion inhibition using green and drug inhibitors. In Journal of Physics: Conference Series, 1378 (2),1-7.

DOI: 10.1088/1742-6596/1378/2/022022

Google Scholar

[3] Omotosho, O. A., Okeniyi, J. O., & Ikotun, J. O. (2018). Corrosion behaviour of mild steel in 0.5 M sulphuric acid. Journal of Engineering and Applied Sciences, 13(14), 5789-5795.

Google Scholar

[4] Karthik, G., & Sundaravadivelu, M. (2016). Studies on the inhibition of mild steel corrosion in hydrochloric acid solution by atenolol drug. Egyptian Journal of Petroleum, 25(2), 183-191.

DOI: 10.1016/j.ejpe.2015.04.003

Google Scholar

[5] Sedik, A., Lerari, D., Salci, A., Athmani, S., Bachari, K., Gecibesler, İ. H., & Solmaz, R. (2020). Dardagan Fruit extract as eco-friendly corrosion inhibitor for mild steel in 1 M HCl: Electrochemical and surface morphological studies. Journal of the Taiwan Institute of Chemical Engineers, 107, 189-200.

DOI: 10.1016/j.jtice.2019.12.006

Google Scholar

[6] Goyal, M., Kumar, S., Bahadur, I., Verma, C., & Ebenso, E. E. (2018). Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. Journal of Molecular Liquids, 256, 565-573.

DOI: 10.1016/j.molliq.2018.02.045

Google Scholar

[7] Abdollahi, F., Foroughi, M.M., Shahidi Zandi, M., & Kazemipour, M. (2020). Electrochemical investigation of meloxicam drug as a corrosion inhibitor for mild steel in hydrochloric and sulfuric acid solutions. Progress in Color, Colorants and Coatings, 13(3), 155-165.

Google Scholar

[8] Raghavendra, N. (2019). Expired Lorazepam Drug: A Medicinal Compound as Green Corrosion Inhibitor for Mild Steel in Hydrochloric Acid System. Chemistry Africa, 2(3), 463-470.

DOI: 10.1007/s42250-019-00061-2

Google Scholar

[9] Pathak, R.K., & Mishra, P. (2016). Drugs as corrosion inhibitors: a review. International journal of Science and Research, 5(4), 671-677.

Google Scholar

[10] Gholamhosseinzadeh, M.R., & Farrahi-Moghaddam, R. (2019). Electrochemical Investigation of the effect of penicillin G benzathine as a green corrosion inhibitor for mild steel. Progress in Color, Colorants and Coatings, 12(1), 15-23.

Google Scholar

[11] Edison T. N., Atchudan R., Pugazhendhi A., Lee Y. R., Sethuraman M.G. (2018). Corrosion inhibition performance of spermidine on mild steel in acid media. Journal of Molecular Liquids, 264, 483-489.

DOI: 10.1016/j.molliq.2018.05.087

Google Scholar

[12] Raja, P.B., Ismail, M., Ghoreishiamiri, S., Mirza, J., Ismail, M.C., Kakooei, S., & Rahim, A.A. (2016). Reviews on corrosion inhibitors: a short view. Chemical Engineering Communications, 203(9), 1145-1156.

DOI: 10.1080/00986445.2016.1172485

Google Scholar

[13] Dohare, P., Chauhan, D. S., Sorour, A. A., & Quraishi, M. A. (2017). DFT and experimental studies on the inhibition potentials of expired Tramadol drug on mild steel corrosion in hydrochloric acid. Materials discovery, 9, 30-41.

DOI: 10.1016/j.md.2017.11.001

Google Scholar

[14] Abdallah, M., Gad, E. A., Al-Fahemi, J. H., & Sobhi, M. (2018). Experimental and theoretical investigation by DFT on the some azole antifungal drugs as green corrosion inhibitors for aluminum in 1.0 M HCl. Protection of Metals and Physical Chemistry of Surfaces, 54(3), 503-512.

DOI: 10.1134/s207020511803022x

Google Scholar

[15] Swetha, G. A., Sachin, H. P., Guruprasad, A. M., & Prasanna, B. M. (2019). Rizatriptan Benzoate as Corrosion Inhibitor for Mild Steel in Acidic Corrosive Medium: Experimental and Theoretical Analysis. Journal of Failure Analysis and Prevention, 19(4), 1113-1126.

DOI: 10.1007/s11668-019-00703-0

Google Scholar

[16] Lekbach, Y., Dong, Y., Li, Z., Xu, D., El Abed, S., Yi, Y., ... & Wang, F. (2019). Catechin hydrate as an eco-friendly biocorrosion inhibitor for 304L stainless steel with dual-action antibacterial properties against Pseudomonas aeruginosa biofilm. Corrosion Science, 157, 98-108.

DOI: 10.1016/j.corsci.2019.05.021

Google Scholar

[17] Ahmed, R. A. (2016). Investigation of corrosion inhibition of vitamins B1 and C on mild steel in 0.5 M HCl solution: experimental and computational approach. Oriental Journal of Chemistry, 32(1), 295-304.

DOI: 10.13005/ojc/320133

Google Scholar

[18] Hashim, N. Z. N., Kassim, K., Zaki, H. M., Alharthi, A. I., & Embong, Z. (2019). XPS and DFT investigations of corrosion inhibition of substituted benzylidene Schiff bases on mild steel in hydrochloric acid. Applied Surface Science, 476, 861-877.

DOI: 10.1016/j.apsusc.2019.01.149

Google Scholar

[19] Dahiya, S., Lata, S., Kumar, R., & Yadav, O. S. (2016). Comparative performance of Uroniums for controlling corrosion of steel with methodical mechanism of inhibition in acidic medium: Part1. Journal of Molecular Liquids, 221, 124-132.

DOI: 10.1016/j.molliq.2016.05.073

Google Scholar

[20] Prasanna, B. M., Praveen, B. M., Hebbar, N., Venkatesha, T. V., Tandon, H. C., & Abd Hamid, S. B. (2017). Electrochemical study on inhibitory effect of Aspirin on mild steel in 1 M hydrochloric acid. Journal of the Association of Arab Universities for Basic and Applied Sciences, 22, 62-69.

DOI: 10.1016/j.jaubas.2015.11.001

Google Scholar

[21] Bustos Terrones, V., Menchaca Campos, C., Romero Romo, M., Esparza Schutz, J. M., Dominguez, A., & Uruchurtu Chavarin, J. (2015). Electrochemical evaluation of an outdated antifungal drug as corrosion inhibitor of mild steel in neutral chloride media. Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science), 5 (1), 31-35.

DOI: 10.2174/2352094905666150622183729

Google Scholar

[22] Verma, C., Ebenso, E. E., Bahadur, I., Obot, I. B., & Quraishi, M. A. (2015). 5-(Phenylthio)-3H-pyrrole-4-carbonitriles as effective corrosion inhibitors for mild steel in 1 M HCl: experimental and theoretical investigation. Journal of Molecular Liquids, 212, 209-218.

DOI: 10.1016/j.molliq.2015.09.009

Google Scholar

[23] Anaee, R. A., Tomi, I. H. R., Abdulmajeed, M. H., Naser, S. A., & Kathem, M. M. (2019). Expired Etoricoxib as a corrosion inhibitor for steel in acidic solution. Journal of Molecular Liquids, 279, 594-602.

DOI: 10.1016/j.molliq.2019.01.169

Google Scholar

[24] Shetty, P. (2020). Schiff bases: An overview of their corrosion inhibition activity in acid media against mild steel. Chemical Engineering Communications, 207(7), 985-1029.

DOI: 10.1080/00986445.2019.1630387

Google Scholar

[25] Soltaninejad, F., & Shahidi, M. (2018). Investigating the effect of penicillin G as environment-friendly corrosion inhibitor for mild steel in H3PO4 solution. Progress in Color, Colorants and Coatings, 11(3), 137-147.

Google Scholar

[26] Singh, P., Chauhan, D. S., Srivastava, K., Srivastava, V., & Quraishi, M. A. (2017). Expired atorvastatin drug as corrosion inhibitor for mild steel in hydrochloric acid solution. International Journal of Industrial Chemistry, 8(4), 363-372.

DOI: 10.1007/s40090-017-0120-5

Google Scholar

[27] Akpan, I. A., & Offiong, N. O. (2014). Electrochemical and gravimetric studies of the corrosion inhibition of mild steel in HCl medium by cephalexin drug. American Journal of Chemistry and Materials Science, 1(1), 1-6.

Google Scholar

[28] Haque, J., Verma, C., Srivastava, V., Quraishi, M. A., & Ebenso, E. E. (2018). Experimental and quantum chemical studies of functionalized tetrahydropyridines as corrosion inhibitors for mild steel in 1 M hydrochloric acid. Results in Physics, 9, 1481-1493.

DOI: 10.1016/j.rinp.2018.04.069

Google Scholar

[29] Fayomi, O. S. I., Atayero, A. A., Mubiayi, M. P., Akande, I. G., Adewuyi, P. A., Fajobi, M. A., ... & Popoola, A. P. I. (2019). Mechanical and opto-electrical response of embedded smart composite coating produced via electrodeposition technique for embedded system in defence application. Journal of Alloys and Compounds, 773, 305-313.

DOI: 10.1016/j.jallcom.2018.09.191

Google Scholar

[30] Anejjar, A., El Mouden, O. I., Batah, A., Bouskri, A., & Rjoub, A. (2018). Corrosion inhibition potential of ascorbic acid on carbon steel in acid media. Applied Journal of Environmental Engineering Science, 3(1), 1-3.

Google Scholar

[31] Fouda, A. S., Mahmoud, W. M., & Mageed, H. A. (2016). Evaluation of an expired nontoxic amlodipine besylate drug as a corrosion inhibitor for low-carbon steel in hydrochloric acid solutions. Journal of Bio-and Tribo-Corrosion, 2(2), 7.

DOI: 10.1007/s40735-016-0037-0

Google Scholar

[32] Chitra, S., & Anand, B. (2017). Surface morphological and FTIR spectroscopic information on the corrosion inhibition of drugs on mild steel in chloride environment. J. Chem. Pharm. Sci, 10, 453-456.

Google Scholar

[33] Fouda, A. S., Eissa, M., & El-Hossiany, A. (2018). Ciprofloxacin as eco-friendly corrosion inhibitor for carbon steel in hydrochloric acid solution. Int. J. Electrochem. Sci, 13, 11096-11112.

DOI: 10.20964/2018.11.86

Google Scholar

[34] Niouri, W., Zerga, B., Sfaira, M., Taleb, M., Touhami, M. E., Hammouti, B., ... & Essassi, E. M. (2014). Electrochemical and chemical studies of some benzodiazepine molecules as corrosion inhibitors for mild steel in 1 M HCl. Int J Electrochem Sci, 9, 8283-8298. for Mild Steel in 1 M HCl. Int. J. Electrochem. Sci. 2014 Dec 1;9:8283-98.

DOI: 10.20964/2016.10.67

Google Scholar

[35] Fayomi O.S.I., Akande I.G., Oluwole O.O., Daramola D. (2018). Effect of water soluble chitosan on the electrochemical corrosion behaviour of mild steel. Chemical Data Collections, 17, 321-326.

DOI: 10.1016/j.cdc.2018.10.006

Google Scholar

[36] Ghosal, P. S., & Gupta, A. K. (2017). Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. Journal of Molecular Liquids, 225, 137-146.

DOI: 10.1016/j.molliq.2016.11.058

Google Scholar

[37] Fayomi, O.S.I., Akande, I.G., & Popoola, A.P.I. (2018). Corrosion protection effect of chitosan on the performance characteristics of A6063 alloy. Journal of Bio-and Tribo-Corrosion, 4(4), 73.

DOI: 10.1007/s40735-018-0192-6

Google Scholar

[38] Hameed R.A., Al-Shafey H.I., Abu-Nawwas A.H. (2014). 2-(2, 6- dichloroaniline) phenylacetic acid Drugs as Eco-Friendly Corrosion Inhibitors for Mild Steel in 1M HCl. Int. J. Electrochem. Sci. 9, 6006-6019.

Google Scholar