Phase Change Materials Technologies Review and Future Application in Lebanon: Part 1

Article Preview

Abstract:

Energy is the most precious resource in our daily life. Global energy consumption is increasing in constant rate, hence the environmental degradation caused by polluting fossil fuel usage as energy resources should be limited. These resources increase the quantity of greenhouse gases emissions, the global warming, and the climate change. The building sector and related activities is responsible of a large part of energy consumption. Therefore, to reduce the energy usage and to increase the dependency of the building, renewable energies are utilized such as solar energy. Noting that this energy is intermittent, a thermal energy storage system must be installed. Thus, phase change materials (PCM) with different ways of building integration are used as a solution. In this paper, a representation of different types of PCM and thermal energy storage applications in the building environment is highlighted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

228-240

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Transition to Sustainable Buildings: Strategies and Opportunities to 2050. International Energy Agency (IEA);(2013).

Google Scholar

[2] International Energy Agency (IEA). International Energy Agency (IEA) Statistics n.d.

Google Scholar

[3] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and Buildings 40 (3) (2008) 394–398.

DOI: 10.1016/j.enbuild.2007.03.007

Google Scholar

[4] Dean, B.; Dulac, J.; Petrichenko, K.; Graham, P. Towards Zero-Emission Efficient and Resilient Buildings; Global Status Report; Global Alliance for Buildings and Construction (GABC): Kongens Lyngby, Denmark, (2016).

Google Scholar

[5] D. Zhou, C.Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy 92 (2012) 593–605.

DOI: 10.1016/j.apenergy.2011.08.025

Google Scholar

[6] Richard B, Cheuk-Ming M, Hughes BR, Cheuk-Ming M, Mak CM. A study of wind and buoyancy driven flows through commercial wind towers. Energy Build 2011; 43:1784–91.

DOI: 10.1016/j.enbuild.2011.03.022

Google Scholar

[7] Hughes BR, Calautit JK, Ghani SA. The development of commercial wind towers for natural ventilation are view. Appl Energy 2012; 92:606–27.

DOI: 10.1016/j.apenergy.2011.11.066

Google Scholar

[8] N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Review of passive PCM latent heat thermal energy storage systems towards building's energy efficiency, Energy and Buildings, Volume 59, 2013, Pages 82-103.

DOI: 10.1016/j.enbuild.2012.12.042

Google Scholar

[9] H. Mehling, L.F. Cabeza, Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications, Springer, (2008).

DOI: 10.1007/978-3-540-68557-9

Google Scholar

[10] Cabeza LF, Gutierrez A, Barreneche C, Ushak S, Fernández ÁG, Inés Fernádez A, et al. Lithium in thermal energy storage: a state-of-the-art review. Renew Sustain Energy Rev (2015).

DOI: 10.1016/j.rser.2014.10.096

Google Scholar

[11] Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Yaxue Lin, Yuting Jia, Guruprasad Alva, Guiyin Fang.

DOI: 10.1016/j.rser.2017.10.002

Google Scholar

[12] Simen Edsjø Kalnæs, Bjørn Petter Jelle, Phase change materials and products for building applications: A state-of-the-art review and future research opportunities, Energy and Buildings, Volume 94, 2015, Pages 150-176.

DOI: 10.1016/j.enbuild.2015.02.023

Google Scholar

[13] Frigione, Mariaenrica - Lettieri, Maria teresa - Sarcinella, Antonella - Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars – Materials – (2019).

DOI: 10.3390/ma12081260

Google Scholar

[14] M. Koschenz, B. Lehmann, Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings, Energy Build 36 (2004) 567–578.

DOI: 10.1016/j.enbuild.2004.01.029

Google Scholar

[15] A. Pasupathy, L. Athanasius, R. Velraj, R. Seeniraj, Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Appl. Therm. Eng 28 (2008) 556–565.

DOI: 10.1016/j.applthermaleng.2007.04.016

Google Scholar

[16] A. Pasupathy, R. Velraj, Effect of double layer phase change material in building roof for year-round thermal management, Energy and Buildings 40 (3) (2008) 193–203.

DOI: 10.1016/j.enbuild.2007.02.016

Google Scholar

[17] E.M. Alawadhi, H.J. Alqallaf, Building roof with conical holes containing PCM to reduce the cooling load: numerical study, Energy Conversion and Management 52 (8-9) (2011) 2958–2964.

DOI: 10.1016/j.enconman.2011.04.004

Google Scholar

[18] A.G. Entrop, H.J.H. Brouwers, A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses, Solar Energy 85 (5) (2011) 1007–1020.

DOI: 10.1016/j.solener.2011.02.017

Google Scholar

[19] Xu X, Zhang YP, Lin KP, Di HF, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build 2005; 37:1084–91.

DOI: 10.1016/j.enbuild.2004.12.016

Google Scholar

[20] K. Nagano, S. Takeda, T. Mochida, K. Shimakura, T. Nakamura, Study of a floor supply air conditioning system using granular phase change material to augment building thermal mass storage – heat response in small scale experiments, Energy Build 38 (2006) 436–446.

DOI: 10.1016/j.enbuild.2005.07.010

Google Scholar

[21] Guo, J., Jiang, Y., Wang, Y., & Zou, B. (2020). Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study. Energy Conversion and Management, 205, 112288.

DOI: 10.1016/j.enconman.2019.112288

Google Scholar

[22] L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy and Buildings 39 (2) (2007) 113–119.

DOI: 10.1016/j.enbuild.2006.03.030

Google Scholar

[23] R. Saxena, D. Rakshit, S. Kaushik, Phase change material (PCM) incorporated bricks for energy conservation in composite climate: A sustainable building solution, Sol. Energy 183 (2019) 276–284, https://doi.org/10.1016/j.solener.2019. 03.035.

DOI: 10.1016/j.solener.2019.03.035

Google Scholar

[24] Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., & Founti, M. (2009). The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites, 31(10), 731-743.

DOI: 10.1016/j.cemconcomp.2009.08.002

Google Scholar

[25] Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Vinh Duy Cao et al.

DOI: 10.1016/j.enconman.2016.11.061

Google Scholar

[26] Joulin, Annabelle, et al. Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material., Applied Thermal Engineering 66.1-2 (2014): 171-180.

DOI: 10.1016/j.applthermaleng.2014.01.027

Google Scholar

[27] Lachheb, M., Younsi, Z., Naji, H., Karkri, M., & Nasrallah, S. B. (2017). Thermal behavior of a hybrid PCM/plaster: A numerical and experimental investigation. Applied Thermal Engineering, 111, 49-59.

DOI: 10.1016/j.applthermaleng.2016.09.083

Google Scholar

[28] Cunha, S., Aguiar, J. B., & Tadeu, A. (2016). Thermal performance and cost analysis of mortars made with PCM and different binders. Construction and Building Materials, 122, 637-648.

DOI: 10.1016/j.conbuildmat.2016.06.114

Google Scholar

[29] Kuznik F, Virgone J, Roux JJ. Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build 2008;40: 148–56.

DOI: 10.1016/j.enbuild.2007.01.022

Google Scholar

[30] F. Kuznik, J. Virgone, Experimental assessment of a phase change material for wall building use, Appl. Energy 86 (2009) 2038–(2046).

DOI: 10.1016/j.apenergy.2009.01.004

Google Scholar

[31] F. Kuznik, J. Virgone, K. Johannes, In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard, Renewable Energy 36 (5) (2011) 1458–1462.

DOI: 10.1016/j.renene.2010.11.008

Google Scholar

[32] A.K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage, Build. Environ. 32 (1997) 405–410.

DOI: 10.1016/s0360-1323(97)00009-7

Google Scholar

[33] Soares N, Gaspar R, Santos P, Costa JJ. Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates. Energy Build 2014; 70:411–21.

DOI: 10.1016/j.enbuild.2013.11.072

Google Scholar

[34] Chaiyat N. Energy and economic analysis of a building air-conditioner with a phase change material (PCM). Energy Convers Manag 2015; 94:150–8.

DOI: 10.1016/j.enconman.2015.01.068

Google Scholar

[35] da Cunha, S. R. L., & de Aguiar, J. L. B. (2020). Phase change materials and energy efficiency of buildings: A review of knowledge. Journal of Energy Storage, 27, 101083.

DOI: 10.1016/j.est.2019.101083

Google Scholar

[36] Reddigari MR, Nallusamy N, Bappala AP, Konireddy HR. Thermal energy storage system using phase change materials – constant heat source. Therm Sci 2012; 16:1097–104.

DOI: 10.2298/tsci100520078r

Google Scholar

[37] R. Baetens, B.P. Jelle, A. Gustavsen, Phase change materials for building applications: a state-of-the-art review, Energy Build. 42 (2010) 1361–1368.

DOI: 10.1016/j.enbuild.2010.03.026

Google Scholar

[38] X. Wang, Y. Zhang, W. Xiao, R. Zeng, Q. Zhang, H. Di, Review on thermal performance of phase change energy storage building envelope, Chinese Science Bulletin 54 (6) (2009) 920–928.

DOI: 10.1007/s11434-009-0120-8

Google Scholar

[39] Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook, Building and Environment 42 (6) (2007) 2197–2209.

DOI: 10.1016/j.buildenv.2006.07.023

Google Scholar

[40] Pintaldi S, Perfumo C, Sethuvenkatraman S, White S, Rosengarten G.A review of thermal energy storage technologies and control approaches for solar cooling. Renew Sustain Energy Rev (2015).

DOI: 10.1016/j.rser.2014.08.062

Google Scholar

[41] de Gracia, A., & Cabeza, L. F. (2015). Phase change materials and thermal energy storage for buildings. Energy and Buildings, 103, 414-419.

DOI: 10.1016/j.enbuild.2015.06.007

Google Scholar

[42] Kinga Pielichowska, Krzysztof Pielichowski, Phase change materials for thermal energy storage, Progress in Materials Science, Volume 65, 2014, Pages 67-123.

DOI: 10.1016/j.pmatsci.2014.03.005

Google Scholar

[43] A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews 13 (2) (2009) 318–345.

DOI: 10.1016/j.rser.2007.10.005

Google Scholar

[44] Rao Z, Wang S, Zhang Z. Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate. Renew Sustain Energy Rev2012.

DOI: 10.1016/j.rser.2012.01.053

Google Scholar

[45] Hussein Akeiber, Payam Nejat, Muhd Zaimi Abd. Majid, Mazlan A. Wahid, Fatemeh Jomehzadeh, Iman Zeynali Famileh, John Kaiser Calautit, Ben Richard Hughes, Sheikh Ahmad Zaki, A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renewable and Sustainable Energy Reviews, Volume 60, 2016, Pages 1470-1497.

DOI: 10.1016/j.rser.2016.03.036

Google Scholar

[46] Kayugz K, et al. Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Convers Manage 1995;36(5):315–23.

DOI: 10.1016/0196-8904(95)98896-u

Google Scholar

[47] A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, et al., State of the art on high temperature thermal energy storage for power generation Part 1-Concepts, materials and modellization, Renew. Sustain. Energy Rev. 14 (2010) 31–55.

DOI: 10.1016/j.rser.2009.07.035

Google Scholar

[48] D. Singh, W. Zhao, W. Yu, D.M. France, T. Kim, Analysis of a graphite foam–NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power, Solar Energy 118 (2015) 232–242.

DOI: 10.1016/j.solener.2015.05.016

Google Scholar

[49] Xiaoqin Sun, Quan Zhang, Mario A. Medina, Kyoung Ok Lee, Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs), Applied Energy, Volume 162, 2016, Pages 1453-1461.

DOI: 10.1016/j.apenergy.2015.03.078

Google Scholar

[50] Abhat A. Low temperature latent heat thermal energy storage. In: Beghi C, editor. Thermal energy storage. Dordrect, Holland: D. Reidel Publication Co.; (1981).

DOI: 10.1007/978-94-009-7843-0_4

Google Scholar

[51] D. Chandra, R. Chellappa, W.-M. Chien, Thermodynamic assessment of binary solid-state thermal storage materials, J. Phys. Chem. Solids 66 (2005) 235– 240.

DOI: 10.1016/j.jpcs.2004.08.047

Google Scholar

[52] Cao L, Su D, Tang Y, Fang G, Tang F. Properties evaluation and applications of thermal energy storage materials in buildings. Renew Sustain Energy Rev 2015; 48:500–22.

DOI: 10.1016/j.rser.2015.04.041

Google Scholar

[53] L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review, Renewable and Sustainable Energy Reviews 15 (3) (2011) 1675–1695.

DOI: 10.1016/j.rser.2010.11.018

Google Scholar

[54] C. Alkan, Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage, Thermochim. Acta 451(2006) 126–130.

DOI: 10.1016/j.tca.2006.09.010

Google Scholar

[55] S.D. Sharma, D. Buddhi, R.L. Sawhney, Accelerated thermal cycle test of latent heat storage materials. Sol. Energy 66, 483–490 (1999).

DOI: 10.1016/s0038-092x(99)00045-6

Google Scholar

[56] Lane GA, Glew DN. Heat of fusion system for solar energy storage. In: Proceedings of the workshop on solar energy storage subsystems for the heating and cooling of buildings. Virginia: Charlothens ville; 1975. p.43– 55.

Google Scholar

[57] Herrick S, Golibersuch DC. Quantitative behavior of a new latent heat storage device for solar heating/cooling systems. In: General International Solar Energy Society Conference; (1978).

Google Scholar

[58] Hashim, Fanar, et al. Experimental and Theoretical Approach to the Corrosion Inhibition of Mild Steel in HCl Solution by a Newly Coumarin., Multidisciplinary Digital Publishing Institute Proceedings. Vol. 41. No. 1. (2019).

DOI: 10.3390/ecsoc-23-06477

Google Scholar

[59] R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conserv. Manage. 193–228 (2015).

DOI: 10.1016/j.enconman.2015.01.084

Google Scholar

[60] Y. Yuan, N. Zhang, W. Tao, X. Cao, Y. He, Fatty acids as phase change materials: a review, Renew. Sustain. Energy Rev. 29 (2014) 482–498.

DOI: 10.1016/j.rser.2013.08.107

Google Scholar

[61] H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv, Prog. Energy Combust. Sci. 2016, 53, 1.

Google Scholar

[62] M. Kenisarin, K. Mahkamov, Sol. Energy Mater. Sol. C 2016, 145, 255.

Google Scholar

[63] Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews 2007; 11:1913–65.

DOI: 10.1016/j.rser.2006.05.005

Google Scholar

[64] Rathod, Manish K. Phase Change Materials and Their Applications., Phase Change Materials and Their Applications (2018): 37.

Google Scholar

[65] V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art, Renewable and Sustainable Energy Reviews 11 (6) (2007) 1146–1166.

DOI: 10.1016/j.rser.2005.10.002

Google Scholar

[66] F. Kuznik, D. David, K. Johannes, J.-J. Roux, A review on phase change materials integrated in building walls, Renewable and Sustainable Energy Reviews 15 (1) (2011) 379–391.

DOI: 10.1016/j.rser.2010.08.019

Google Scholar

[67] Amar M. Khudhair, Mohammed M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Conversion and Management, Volume 45, Issue 2, 2004, Pages 263-275.

DOI: 10.1016/s0196-8904(03)00131-6

Google Scholar

[68] E. Osterman, V.V. Tyagi, V. Butala, N.A. Rahim, U. Stritih, Review of PCM based cooling technologies for buildings, Energy and Buildings 49 (2012) 37–49.

DOI: 10.1016/j.enbuild.2012.03.022

Google Scholar

[69] Zhang, Nan, et al. Latent heat thermal energy storage systems with solid–liquid phase change materials: a review., Advanced Engineering Materials 20.6 (2018): 1700753.

DOI: 10.1002/adem.201700753

Google Scholar

[70] Castell A, Martorell I, Medrano M, Perez G, Cabeza LF. Experimental study of the use of PCM in constructive brick solutions for passive cooling. Energy Build 2010; 42: 534–40.

DOI: 10.1016/j.enbuild.2009.10.022

Google Scholar

[71] Konuklu, Yeliz, et al. Review on using microencapsulated phase change materials (PCM) in building applications., Energy and Buildings 106 (2015): 134-155.

DOI: 10.1016/j.enbuild.2015.07.019

Google Scholar

[72] Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build 2006; 38:1262–9.

DOI: 10.1016/j.enbuild.2006.02.009

Google Scholar