[1]
Transition to Sustainable Buildings: Strategies and Opportunities to 2050. International Energy Agency (IEA);(2013).
Google Scholar
[2]
International Energy Agency (IEA). International Energy Agency (IEA) Statistics n.d.
Google Scholar
[3]
L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and Buildings 40 (3) (2008) 394–398.
DOI: 10.1016/j.enbuild.2007.03.007
Google Scholar
[4]
Dean, B.; Dulac, J.; Petrichenko, K.; Graham, P. Towards Zero-Emission Efficient and Resilient Buildings; Global Status Report; Global Alliance for Buildings and Construction (GABC): Kongens Lyngby, Denmark, (2016).
Google Scholar
[5]
D. Zhou, C.Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy 92 (2012) 593–605.
DOI: 10.1016/j.apenergy.2011.08.025
Google Scholar
[6]
Richard B, Cheuk-Ming M, Hughes BR, Cheuk-Ming M, Mak CM. A study of wind and buoyancy driven flows through commercial wind towers. Energy Build 2011; 43:1784–91.
DOI: 10.1016/j.enbuild.2011.03.022
Google Scholar
[7]
Hughes BR, Calautit JK, Ghani SA. The development of commercial wind towers for natural ventilation are view. Appl Energy 2012; 92:606–27.
DOI: 10.1016/j.apenergy.2011.11.066
Google Scholar
[8]
N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Review of passive PCM latent heat thermal energy storage systems towards building's energy efficiency, Energy and Buildings, Volume 59, 2013, Pages 82-103.
DOI: 10.1016/j.enbuild.2012.12.042
Google Scholar
[9]
H. Mehling, L.F. Cabeza, Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications, Springer, (2008).
DOI: 10.1007/978-3-540-68557-9
Google Scholar
[10]
Cabeza LF, Gutierrez A, Barreneche C, Ushak S, Fernández ÁG, Inés Fernádez A, et al. Lithium in thermal energy storage: a state-of-the-art review. Renew Sustain Energy Rev (2015).
DOI: 10.1016/j.rser.2014.10.096
Google Scholar
[11]
Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Yaxue Lin, Yuting Jia, Guruprasad Alva, Guiyin Fang.
DOI: 10.1016/j.rser.2017.10.002
Google Scholar
[12]
Simen Edsjø Kalnæs, Bjørn Petter Jelle, Phase change materials and products for building applications: A state-of-the-art review and future research opportunities, Energy and Buildings, Volume 94, 2015, Pages 150-176.
DOI: 10.1016/j.enbuild.2015.02.023
Google Scholar
[13]
Frigione, Mariaenrica - Lettieri, Maria teresa - Sarcinella, Antonella - Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars – Materials – (2019).
DOI: 10.3390/ma12081260
Google Scholar
[14]
M. Koschenz, B. Lehmann, Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings, Energy Build 36 (2004) 567–578.
DOI: 10.1016/j.enbuild.2004.01.029
Google Scholar
[15]
A. Pasupathy, L. Athanasius, R. Velraj, R. Seeniraj, Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Appl. Therm. Eng 28 (2008) 556–565.
DOI: 10.1016/j.applthermaleng.2007.04.016
Google Scholar
[16]
A. Pasupathy, R. Velraj, Effect of double layer phase change material in building roof for year-round thermal management, Energy and Buildings 40 (3) (2008) 193–203.
DOI: 10.1016/j.enbuild.2007.02.016
Google Scholar
[17]
E.M. Alawadhi, H.J. Alqallaf, Building roof with conical holes containing PCM to reduce the cooling load: numerical study, Energy Conversion and Management 52 (8-9) (2011) 2958–2964.
DOI: 10.1016/j.enconman.2011.04.004
Google Scholar
[18]
A.G. Entrop, H.J.H. Brouwers, A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses, Solar Energy 85 (5) (2011) 1007–1020.
DOI: 10.1016/j.solener.2011.02.017
Google Scholar
[19]
Xu X, Zhang YP, Lin KP, Di HF, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build 2005; 37:1084–91.
DOI: 10.1016/j.enbuild.2004.12.016
Google Scholar
[20]
K. Nagano, S. Takeda, T. Mochida, K. Shimakura, T. Nakamura, Study of a floor supply air conditioning system using granular phase change material to augment building thermal mass storage – heat response in small scale experiments, Energy Build 38 (2006) 436–446.
DOI: 10.1016/j.enbuild.2005.07.010
Google Scholar
[21]
Guo, J., Jiang, Y., Wang, Y., & Zou, B. (2020). Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study. Energy Conversion and Management, 205, 112288.
DOI: 10.1016/j.enconman.2019.112288
Google Scholar
[22]
L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy and Buildings 39 (2) (2007) 113–119.
DOI: 10.1016/j.enbuild.2006.03.030
Google Scholar
[23]
R. Saxena, D. Rakshit, S. Kaushik, Phase change material (PCM) incorporated bricks for energy conservation in composite climate: A sustainable building solution, Sol. Energy 183 (2019) 276–284, https://doi.org/10.1016/j.solener.2019. 03.035.
DOI: 10.1016/j.solener.2019.03.035
Google Scholar
[24]
Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., & Founti, M. (2009). The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites, 31(10), 731-743.
DOI: 10.1016/j.cemconcomp.2009.08.002
Google Scholar
[25]
Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Vinh Duy Cao et al.
DOI: 10.1016/j.enconman.2016.11.061
Google Scholar
[26]
Joulin, Annabelle, et al. Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material., Applied Thermal Engineering 66.1-2 (2014): 171-180.
DOI: 10.1016/j.applthermaleng.2014.01.027
Google Scholar
[27]
Lachheb, M., Younsi, Z., Naji, H., Karkri, M., & Nasrallah, S. B. (2017). Thermal behavior of a hybrid PCM/plaster: A numerical and experimental investigation. Applied Thermal Engineering, 111, 49-59.
DOI: 10.1016/j.applthermaleng.2016.09.083
Google Scholar
[28]
Cunha, S., Aguiar, J. B., & Tadeu, A. (2016). Thermal performance and cost analysis of mortars made with PCM and different binders. Construction and Building Materials, 122, 637-648.
DOI: 10.1016/j.conbuildmat.2016.06.114
Google Scholar
[29]
Kuznik F, Virgone J, Roux JJ. Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build 2008;40: 148–56.
DOI: 10.1016/j.enbuild.2007.01.022
Google Scholar
[30]
F. Kuznik, J. Virgone, Experimental assessment of a phase change material for wall building use, Appl. Energy 86 (2009) 2038–(2046).
DOI: 10.1016/j.apenergy.2009.01.004
Google Scholar
[31]
F. Kuznik, J. Virgone, K. Johannes, In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard, Renewable Energy 36 (5) (2011) 1458–1462.
DOI: 10.1016/j.renene.2010.11.008
Google Scholar
[32]
A.K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage, Build. Environ. 32 (1997) 405–410.
DOI: 10.1016/s0360-1323(97)00009-7
Google Scholar
[33]
Soares N, Gaspar R, Santos P, Costa JJ. Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates. Energy Build 2014; 70:411–21.
DOI: 10.1016/j.enbuild.2013.11.072
Google Scholar
[34]
Chaiyat N. Energy and economic analysis of a building air-conditioner with a phase change material (PCM). Energy Convers Manag 2015; 94:150–8.
DOI: 10.1016/j.enconman.2015.01.068
Google Scholar
[35]
da Cunha, S. R. L., & de Aguiar, J. L. B. (2020). Phase change materials and energy efficiency of buildings: A review of knowledge. Journal of Energy Storage, 27, 101083.
DOI: 10.1016/j.est.2019.101083
Google Scholar
[36]
Reddigari MR, Nallusamy N, Bappala AP, Konireddy HR. Thermal energy storage system using phase change materials – constant heat source. Therm Sci 2012; 16:1097–104.
DOI: 10.2298/tsci100520078r
Google Scholar
[37]
R. Baetens, B.P. Jelle, A. Gustavsen, Phase change materials for building applications: a state-of-the-art review, Energy Build. 42 (2010) 1361–1368.
DOI: 10.1016/j.enbuild.2010.03.026
Google Scholar
[38]
X. Wang, Y. Zhang, W. Xiao, R. Zeng, Q. Zhang, H. Di, Review on thermal performance of phase change energy storage building envelope, Chinese Science Bulletin 54 (6) (2009) 920–928.
DOI: 10.1007/s11434-009-0120-8
Google Scholar
[39]
Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook, Building and Environment 42 (6) (2007) 2197–2209.
DOI: 10.1016/j.buildenv.2006.07.023
Google Scholar
[40]
Pintaldi S, Perfumo C, Sethuvenkatraman S, White S, Rosengarten G.A review of thermal energy storage technologies and control approaches for solar cooling. Renew Sustain Energy Rev (2015).
DOI: 10.1016/j.rser.2014.08.062
Google Scholar
[41]
de Gracia, A., & Cabeza, L. F. (2015). Phase change materials and thermal energy storage for buildings. Energy and Buildings, 103, 414-419.
DOI: 10.1016/j.enbuild.2015.06.007
Google Scholar
[42]
Kinga Pielichowska, Krzysztof Pielichowski, Phase change materials for thermal energy storage, Progress in Materials Science, Volume 65, 2014, Pages 67-123.
DOI: 10.1016/j.pmatsci.2014.03.005
Google Scholar
[43]
A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews 13 (2) (2009) 318–345.
DOI: 10.1016/j.rser.2007.10.005
Google Scholar
[44]
Rao Z, Wang S, Zhang Z. Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate. Renew Sustain Energy Rev2012.
DOI: 10.1016/j.rser.2012.01.053
Google Scholar
[45]
Hussein Akeiber, Payam Nejat, Muhd Zaimi Abd. Majid, Mazlan A. Wahid, Fatemeh Jomehzadeh, Iman Zeynali Famileh, John Kaiser Calautit, Ben Richard Hughes, Sheikh Ahmad Zaki, A review on phase change material (PCM) for sustainable passive cooling in building envelopes, Renewable and Sustainable Energy Reviews, Volume 60, 2016, Pages 1470-1497.
DOI: 10.1016/j.rser.2016.03.036
Google Scholar
[46]
Kayugz K, et al. Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Convers Manage 1995;36(5):315–23.
DOI: 10.1016/0196-8904(95)98896-u
Google Scholar
[47]
A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, et al., State of the art on high temperature thermal energy storage for power generation Part 1-Concepts, materials and modellization, Renew. Sustain. Energy Rev. 14 (2010) 31–55.
DOI: 10.1016/j.rser.2009.07.035
Google Scholar
[48]
D. Singh, W. Zhao, W. Yu, D.M. France, T. Kim, Analysis of a graphite foam–NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power, Solar Energy 118 (2015) 232–242.
DOI: 10.1016/j.solener.2015.05.016
Google Scholar
[49]
Xiaoqin Sun, Quan Zhang, Mario A. Medina, Kyoung Ok Lee, Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs), Applied Energy, Volume 162, 2016, Pages 1453-1461.
DOI: 10.1016/j.apenergy.2015.03.078
Google Scholar
[50]
Abhat A. Low temperature latent heat thermal energy storage. In: Beghi C, editor. Thermal energy storage. Dordrect, Holland: D. Reidel Publication Co.; (1981).
DOI: 10.1007/978-94-009-7843-0_4
Google Scholar
[51]
D. Chandra, R. Chellappa, W.-M. Chien, Thermodynamic assessment of binary solid-state thermal storage materials, J. Phys. Chem. Solids 66 (2005) 235– 240.
DOI: 10.1016/j.jpcs.2004.08.047
Google Scholar
[52]
Cao L, Su D, Tang Y, Fang G, Tang F. Properties evaluation and applications of thermal energy storage materials in buildings. Renew Sustain Energy Rev 2015; 48:500–22.
DOI: 10.1016/j.rser.2015.04.041
Google Scholar
[53]
L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review, Renewable and Sustainable Energy Reviews 15 (3) (2011) 1675–1695.
DOI: 10.1016/j.rser.2010.11.018
Google Scholar
[54]
C. Alkan, Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage, Thermochim. Acta 451(2006) 126–130.
DOI: 10.1016/j.tca.2006.09.010
Google Scholar
[55]
S.D. Sharma, D. Buddhi, R.L. Sawhney, Accelerated thermal cycle test of latent heat storage materials. Sol. Energy 66, 483–490 (1999).
DOI: 10.1016/s0038-092x(99)00045-6
Google Scholar
[56]
Lane GA, Glew DN. Heat of fusion system for solar energy storage. In: Proceedings of the workshop on solar energy storage subsystems for the heating and cooling of buildings. Virginia: Charlothens ville; 1975. p.43– 55.
Google Scholar
[57]
Herrick S, Golibersuch DC. Quantitative behavior of a new latent heat storage device for solar heating/cooling systems. In: General International Solar Energy Society Conference; (1978).
Google Scholar
[58]
Hashim, Fanar, et al. Experimental and Theoretical Approach to the Corrosion Inhibition of Mild Steel in HCl Solution by a Newly Coumarin., Multidisciplinary Digital Publishing Institute Proceedings. Vol. 41. No. 1. (2019).
DOI: 10.3390/ecsoc-23-06477
Google Scholar
[59]
R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conserv. Manage. 193–228 (2015).
DOI: 10.1016/j.enconman.2015.01.084
Google Scholar
[60]
Y. Yuan, N. Zhang, W. Tao, X. Cao, Y. He, Fatty acids as phase change materials: a review, Renew. Sustain. Energy Rev. 29 (2014) 482–498.
DOI: 10.1016/j.rser.2013.08.107
Google Scholar
[61]
H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv, Prog. Energy Combust. Sci. 2016, 53, 1.
Google Scholar
[62]
M. Kenisarin, K. Mahkamov, Sol. Energy Mater. Sol. C 2016, 145, 255.
Google Scholar
[63]
Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renewable and Sustainable Energy Reviews 2007; 11:1913–65.
DOI: 10.1016/j.rser.2006.05.005
Google Scholar
[64]
Rathod, Manish K. Phase Change Materials and Their Applications., Phase Change Materials and Their Applications (2018): 37.
Google Scholar
[65]
V.V. Tyagi, D. Buddhi, PCM thermal storage in buildings: a state of art, Renewable and Sustainable Energy Reviews 11 (6) (2007) 1146–1166.
DOI: 10.1016/j.rser.2005.10.002
Google Scholar
[66]
F. Kuznik, D. David, K. Johannes, J.-J. Roux, A review on phase change materials integrated in building walls, Renewable and Sustainable Energy Reviews 15 (1) (2011) 379–391.
DOI: 10.1016/j.rser.2010.08.019
Google Scholar
[67]
Amar M. Khudhair, Mohammed M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Conversion and Management, Volume 45, Issue 2, 2004, Pages 263-275.
DOI: 10.1016/s0196-8904(03)00131-6
Google Scholar
[68]
E. Osterman, V.V. Tyagi, V. Butala, N.A. Rahim, U. Stritih, Review of PCM based cooling technologies for buildings, Energy and Buildings 49 (2012) 37–49.
DOI: 10.1016/j.enbuild.2012.03.022
Google Scholar
[69]
Zhang, Nan, et al. Latent heat thermal energy storage systems with solid–liquid phase change materials: a review., Advanced Engineering Materials 20.6 (2018): 1700753.
DOI: 10.1002/adem.201700753
Google Scholar
[70]
Castell A, Martorell I, Medrano M, Perez G, Cabeza LF. Experimental study of the use of PCM in constructive brick solutions for passive cooling. Energy Build 2010; 42: 534–40.
DOI: 10.1016/j.enbuild.2009.10.022
Google Scholar
[71]
Konuklu, Yeliz, et al. Review on using microencapsulated phase change materials (PCM) in building applications., Energy and Buildings 106 (2015): 134-155.
DOI: 10.1016/j.enbuild.2015.07.019
Google Scholar
[72]
Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build 2006; 38:1262–9.
DOI: 10.1016/j.enbuild.2006.02.009
Google Scholar