[1]
Transition to Sustainable Buildings: Strategies and Opportunities to 2050. International Energy Agency (IEA);(2013).
Google Scholar
[2]
International Energy Agency (IEA). International Energy Agency (IEA) Statistics n.d.
Google Scholar
[3]
L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and Buildings 40 (3) (2008) 394–398.
DOI: 10.1016/j.enbuild.2007.03.007
Google Scholar
[4]
Dean, B.; Dulac, J.; Petrichenko, K.; Graham, P. Towards Zero-Emission Efficient and Resilient Buildings; Global Status Report; Global Alliance for Buildings and Construction (GABC): Kongens Lyngby, Denmark, (2016).
Google Scholar
[5]
D. Zhou, C.Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied Energy 92 (2012) 593–605.
DOI: 10.1016/j.apenergy.2011.08.025
Google Scholar
[6]
Richard B, Cheuk-Ming M, Hughes BR, Cheuk-Ming M, Mak CM. A study of wind and buoyancy driven flows through commercial wind towers. Energy Build 2011; 43:1784–91.
DOI: 10.1016/j.enbuild.2011.03.022
Google Scholar
[7]
Hughes BR, Calautit JK, Ghani SA. The development of commercial wind towers for natural ventilation are view. Appl Energy 2012; 92:606–27.
DOI: 10.1016/j.apenergy.2011.11.066
Google Scholar
[8]
N. Soares, J.J. Costa, A.R. Gaspar, P. Santos, Review of passive PCM latent heat thermal energy storage systems towards building's energy efficiency, Energy and Buildings, Volume 59, 2013, Pages 82-103.
DOI: 10.1016/j.enbuild.2012.12.042
Google Scholar
[9]
H. Mehling, L.F. Cabeza, Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications, Springer, (2008).
DOI: 10.1007/978-3-540-68557-9
Google Scholar
[10]
Cabeza LF, Gutierrez A, Barreneche C, Ushak S, Fernández ÁG, Inés Fernádez A, et al. Lithium in thermal energy storage: a state-of-the-art review. Renew Sustain Energy Rev (2015).
DOI: 10.1016/j.rser.2014.10.096
Google Scholar
[11]
Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Yaxue Lin, Yuting Jia, Guruprasad Alva, Guiyin Fang.
DOI: 10.1016/j.rser.2017.10.002
Google Scholar
[12]
Simen Edsjø Kalnæs, Bjørn Petter Jelle, Phase change materials and products for building applications: A state-of-the-art review and future research opportunities, Energy and Buildings, Volume 94, 2015, Pages 150-176.
DOI: 10.1016/j.enbuild.2015.02.023
Google Scholar
[13]
Frigione, Mariaenrica - Lettieri, Maria teresa - Sarcinella, Antonella - Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars – Materials – (2019).
DOI: 10.3390/ma12081260
Google Scholar
[14]
M. Koschenz, B. Lehmann, Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings, Energy Build 36 (2004) 567–578.
DOI: 10.1016/j.enbuild.2004.01.029
Google Scholar
[15]
A. Pasupathy, L. Athanasius, R. Velraj, R. Seeniraj, Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Appl. Therm. Eng 28 (2008) 556–565.
DOI: 10.1016/j.applthermaleng.2007.04.016
Google Scholar
[16]
A. Pasupathy, R. Velraj, Effect of double layer phase change material in building roof for year-round thermal management, Energy and Buildings 40 (3) (2008) 193–203.
DOI: 10.1016/j.enbuild.2007.02.016
Google Scholar
[17]
E.M. Alawadhi, H.J. Alqallaf, Building roof with conical holes containing PCM to reduce the cooling load: numerical study, Energy Conversion and Management 52 (8-9) (2011) 2958–2964.
DOI: 10.1016/j.enconman.2011.04.004
Google Scholar
[18]
A.G. Entrop, H.J.H. Brouwers, A.H.M.E. Reinders, Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses, Solar Energy 85 (5) (2011) 1007–1020.
DOI: 10.1016/j.solener.2011.02.017
Google Scholar
[19]
Xu X, Zhang YP, Lin KP, Di HF, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build 2005; 37:1084–91.
DOI: 10.1016/j.enbuild.2004.12.016
Google Scholar
[20]
K. Nagano, S. Takeda, T. Mochida, K. Shimakura, T. Nakamura, Study of a floor supply air conditioning system using granular phase change material to augment building thermal mass storage – heat response in small scale experiments, Energy Build 38 (2006) 436–446.
DOI: 10.1016/j.enbuild.2005.07.010
Google Scholar
[21]
Guo, J., Jiang, Y., Wang, Y., & Zou, B. (2020). Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study. Energy Conversion and Management, 205, 112288.
DOI: 10.1016/j.enconman.2019.112288
Google Scholar
[22]
L.F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy and Buildings 39 (2) (2007) 113–119.
DOI: 10.1016/j.enbuild.2006.03.030
Google Scholar
[23]
R. Saxena, D. Rakshit, S. Kaushik, Phase change material (PCM) incorporated bricks for energy conservation in composite climate: A sustainable building solution, Sol. Energy 183 (2019) 276–284, https://doi.org/10.1016/j.solener.2019. 03.035.
DOI: 10.1016/j.solener.2019.03.035
Google Scholar
[24]
Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., & Founti, M. (2009). The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cement and Concrete Composites, 31(10), 731-743.
DOI: 10.1016/j.cemconcomp.2009.08.002
Google Scholar
[25]
Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Vinh Duy Cao et al.
DOI: 10.1016/j.enconman.2016.11.061
Google Scholar
[26]
Joulin, Annabelle, et al. Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material., Applied Thermal Engineering 66.1-2 (2014): 171-180.
DOI: 10.1016/j.applthermaleng.2014.01.027
Google Scholar
[27]
Lachheb, M., Younsi, Z., Naji, H., Karkri, M., & Nasrallah, S. B. (2017). Thermal behavior of a hybrid PCM/plaster: A numerical and experimental investigation. Applied Thermal Engineering, 111, 49-59.
DOI: 10.1016/j.applthermaleng.2016.09.083
Google Scholar
[28]
Cunha, S., Aguiar, J. B., & Tadeu, A. (2016). Thermal performance and cost analysis of mortars made with PCM and different binders. Construction and Building Materials, 122, 637-648.
DOI: 10.1016/j.conbuildmat.2016.06.114
Google Scholar
[29]
Kuznik F, Virgone J, Roux JJ. Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build 2008;40: 148–56.
DOI: 10.1016/j.enbuild.2007.01.022
Google Scholar
[30]
F. Kuznik, J. Virgone, Experimental assessment of a phase change material for wall building use, Appl. Energy 86 (2009) 2038–(2046).
DOI: 10.1016/j.apenergy.2009.01.004
Google Scholar
[31]
F. Kuznik, J. Virgone, K. Johannes, In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard, Renewable Energy 36 (5) (2011) 1458–1462.
DOI: 10.1016/j.renene.2010.11.008
Google Scholar
[32]
A.K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage, Build. Environ. 32 (1997) 405–410.
DOI: 10.1016/s0360-1323(97)00009-7
Google Scholar
[33]
Soares N, Gaspar R, Santos P, Costa JJ. Multi-dimensional optimization of the incorporation of PCM-drywalls in lightweight steel-framed residential buildings in different climates. Energy Build 2014; 70:411–21.
DOI: 10.1016/j.enbuild.2013.11.072
Google Scholar
[34]
Chaiyat N. Energy and economic analysis of a building air-conditioner with a phase change material (PCM). Energy Convers Manag 2015; 94:150–8.
DOI: 10.1016/j.enconman.2015.01.068
Google Scholar
[35]
da Cunha, S. R. L., & de Aguiar, J. L. B. (2020). Phase change materials and energy efficiency of buildings: A review of knowledge. Journal of Energy Storage, 27, 101083.
DOI: 10.1016/j.est.2019.101083
Google Scholar
[36]
Reddigari MR, Nallusamy N, Bappala AP, Konireddy HR. Thermal energy storage system using phase change materials – constant heat source. Therm Sci 2012; 16:1097–104.
DOI: 10.2298/tsci100520078r
Google Scholar
[37]
R. Baetens, B.P. Jelle, A. Gustavsen, Phase change materials for building applications: a state-of-the-art review, Energy Build. 42 (2010) 1361–1368.
DOI: 10.1016/j.enbuild.2010.03.026
Google Scholar
[38]
Y. Zhang, K. Lin, Q. Zhang, H. Di, Ideal thermophysical properties for free cooling (or heating) buildings with constant thermal physical property material, Energy and Buildings 38 (10) (2006) 1164–1170.
DOI: 10.1016/j.enbuild.2006.01.008
Google Scholar
[39]
X. Wang, Y. Zhang, W. Xiao, R. Zeng, Q. Zhang, H. Di, Review on thermal performance of phase change energy storage building envelope, Chinese Science Bulletin 54 (6) (2009) 920–928.
DOI: 10.1007/s11434-009-0120-8
Google Scholar
[40]
Y. Zhang, G. Zhou, K. Lin, Q. Zhang, H. Di, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook, Building and Environment 42 (6) (2007) 2197–2209.
DOI: 10.1016/j.buildenv.2006.07.023
Google Scholar
[41]
Rao Z, Wang S, Zhang Z. Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate. Renew Sustain Energy Rev2012.
DOI: 10.1016/j.rser.2012.01.053
Google Scholar
[42]
G. Zhou, Y. Zhang, X. Wang, K. Lin, W. Xiao, An assessment of mixed type PCM gypsum and shape-stabilized PCM plates in a building for passive solar heating, Solar Energy 81 (2007) 1351–1360.
DOI: 10.1016/j.solener.2007.01.014
Google Scholar
[43]
Saba, Sabine, Makram El Bachawati, and Mike Malek. Cradle to grave Life Cycle Assessment of Lebanese biomass briquettes., Journal of Cleaner Production 253 (2020): 119851.
DOI: 10.1016/j.jclepro.2019.119851
Google Scholar
[44]
Kinab, E., Salem, T., & Abi Zeid, N. (2018, November). The first BIPV plant in Lebanon: performance analysis of hybrid configuration with diesel generator. In 2018 4th International Conference on Renewable Energies for Developing Countries (REDEC) (pp.1-6). IEEE.
DOI: 10.1109/redec.2018.8597932
Google Scholar
[45]
Dagher, Leila, and Isabella Ruble. Modeling Lebanon's electricity sector: alternative scenarios and their implications., Energy 36.7 (2011): 4315-4326.
DOI: 10.1016/j.energy.2011.04.010
Google Scholar
[46]
Wehbe, N. (2020). Optimization of Lebanon's power generation scenarios to meet the electricity demand by 2030. The Electricity Journal, 33(5), 106764.
DOI: 10.1016/j.tej.2020.106764
Google Scholar
[47]
Salem, T. (2009, July). Prospects for solar thermal energy use in residential buildings in Lebanon. In 2009 International Conference on Advances in Computational Tools for Engineering Applications (pp.309-314). IEEE.
DOI: 10.1109/actea.2009.5227892
Google Scholar
[48]
Chedid, Riad B., and Raymond F. Ghajar. Assessment of energy efficiency options in the building sector of Lebanon., Energy Policy 32.5 (2004): 647-655.
DOI: 10.1016/s0301-4215(02)00328-2
Google Scholar