[1]
A.A. Klyosov, Wood-polymer composites, Scientific bases and technologies, St. Petersburg, (2010).
Google Scholar
[2]
P.S. Krivonogov, A.E. Shkuro, V.V. Glukhikh, O.V. Stoyanov, Composite materials based on thermoplastic matrix, Polymer Science. Series D. 12, 1 (2019) 41-46.
DOI: 10.1134/s1995421219010106
Google Scholar
[3]
Q. Chen, H. Xue, J. Lin, Preparation of Polypropylene-graft-Cardanol by Reactive Extrusion and Its Composite Material with Bamboo Powder, J Appl. Polym. Sci. 115 (2010) 1160-1167.
DOI: 10.1002/app.31227
Google Scholar
[4]
Lukas Sobczak, Reinhold W. Lang, Andreas Haidc, Polypropylene composites with natural fibers and wood, Compositcs Science and Technology. 72, 5 (2012) 550-557.
DOI: 10.1016/j.compscitech.2011.12.013
Google Scholar
[5]
I.V. Susoeva, T.N. Vakhnina, Unused vegetable waste and heat-insulating composite plates based on them, Izvestiya of higher educational institutions. Construction. 7, 727 (2019) 49-59.
Google Scholar
[6]
A.E. Shkuro, V.V. Glukhikh, N.M. Mukhin, Obtaining and studying the properties of wood-polymer composites with fillers from vegetable waste, Bulletin of the Moscow State University of Forest - Lesnoy Bulletin. 20, 3 (2016) 101-105.
Google Scholar
[7]
J.K. Kim, K. Pal, Recent Advances in the Processing of Wood-Plastic Composites (Engineering Materials), Springer, New York, (2010).
Google Scholar
[8]
S. Venkatraman, L. Kleiner, Properties of three types of cross-linked polyethylene, Adv. in Polym. Tech. 9, 3 (1989) 262-270.
Google Scholar
[9]
B.R. Khakimullin, I.Z. Bagautdinov Advantages of XLPE Insulated Power Cables, Innovative Science. 4, 16 (2016) 198-200.
Google Scholar
[10]
V.N. Studentsov, I.V. Pyataev, Influence of microwave electromagnetic oscillations on the structure and properties of thermoplastics and thermosets, Vestnik SSTU. 75, 2 (2014) 86-93.
Google Scholar
[11]
O. Faruk, M. Sain. Lignin in polymer composites, Waltham: Elsevier, (2016).
Google Scholar
[12]
A.E. Shkuro, V.V. Glukhikh, P.S. Krivonogov, O.V. Stoyanov, Agar-based fillers for wood-polymer composites (review), Bulletin of Kazan Technological University. 17, 21 (2014) 160-163.
Google Scholar
[13]
V.V. Glukhikh, V.G. Buryndin, A.V. Artyemov, A.V. Savinovskih, P.S. Krivonogov, A.S. Krivonogova, Plastics: physical-and-mechanical properties and biodegradable potential, Foods and Raw Materials. 8, 1 (2000) 149-154.
DOI: 10.21603/2308-4057-2020-1-149-154
Google Scholar
[14]
A. Bledzki, O. Faruk, Creep and impact properties of wood fiber - polypropylene composites: influence of temperature and moisture content, Composites Science and Technology. 64, 5 (2004) 693-700.
DOI: 10.1016/s0266-3538(03)00291-4
Google Scholar
[15]
E. Franco-Marques, J.A. Mendez, M.A. Pelach, F. Vilaseca, J. Bayer, P. Mutje, Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers, Chemical Engineering Journal. 166, 3 (2011) 1170-1178.
DOI: 10.1016/j.cej.2010.12.031
Google Scholar
[16]
A. Palm, J. Smith, M. Driscoll, L. Smith, L.S. Larsen, Influence of ionizing radiation on the mechanical properties of a wood-plastic composite, Physics Procedia. 66 (2015) 595-603.
DOI: 10.1016/j.phpro.2015.05.079
Google Scholar
[17]
H. Li, Z. Zhang, K. Song, S. Lee, S.-J. Chun, D. Zhou, Q. Wu, Effect of durability treatment on ultraviolet resistance, strength, and surface wettability of wood plastic composite, BioRes. 9, 2 (2014) 3591-3601.
DOI: 10.15376/biores.9.2.3591-3601
Google Scholar
[18]
A.E. Shkuro, A.V. Chernysheva, P.S. Krivonogov, A.V. Artyomov, Study of the possibility of modifying wood-polymer composites by UV radiation, Bulletin of the Technological University. 22, 5 (2019) 84-87.
Google Scholar
[19]
A.V. Chernysheva, A.E. Shkuro, P.S. Krivonogov, A.V. Artyomov, Study of the Possibility of Chemical Crosslinking of Wood-Polymer Composites, Bulletin of the Technological University. 22, 8 (2019) 99-101.
Google Scholar
[20]
T.S. Vydrina, A.V. Artyomov, A.E. Shkuro, A.V. Savinovskikh, Study of the possibility of obtaining biodegradable wood-polymer materials, Bulletin of the Technological University. 22, 12 (2019) 15-18.
Google Scholar
[21]
V.V. Glukhikh, A.E. Shkuro, T.A. Guda, O.V. Stoyanov, Preparation, properties and application of biodegradable wood-polymer composites (review), Bulletin of the Technological University. 15, 9 (2012) 75-82.
Google Scholar
[22]
V.K. Thakur, Green Composites from Natural Resources, CRC Press, Boca Raton, (2013).
Google Scholar
[23]
A.A. Alireza, Wood – plastic composites as promising green-composites for automotive industries! (Review Paper), Bioresource Technology. 99, 11 (2008) 4661-4667.
DOI: 10.1016/j.biortech.2007.09.043
Google Scholar
[24]
M.A. Binhussain, Maher El-Tonsy, Palm leave and plastic waste wood composite for out-door structure, Construction and Building Materials. 47 (2013) 1431-1435.
DOI: 10.1016/j.conbuildmat.2013.06.031
Google Scholar
[25]
M. Zahedi, H. Pirayesh, H. Khanjanzadeh, M. M. Tabar, Organo-modified montmorillonite reinforced walnut shell / polypropylene composites, Mater. Design. 51 (2013) 803-809.
DOI: 10.1016/j.matdes.2013.05.007
Google Scholar
[26]
H. Khon, O.V. Bashkov, S.V. Zolotareva, D.B. Solovev, Modeling the Propagation of Elastic Ultrasonic Waves in Isotropic and Anisotropic Materials When Excited by Various Sources, Materials Science Forum, Vol. 945 (2019) 926-931. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.945.926.
DOI: 10.4028/www.scientific.net/msf.945.926
Google Scholar