[1]
G. Ravichandran, G. Rathnakar, N. Santhosh, Effect of heat treated HNT on physico-mechanical properties of epoxy nanocomposites, Composites Communications. 13 (2019) 42-46.
DOI: 10.1016/j.coco.2019.02.005
Google Scholar
[2]
S. Zhou, Z.G. Chen, R. Tusiime, C.Cheng, Z.Y. Sun, L. Xu, Y. Liu, M.Q. Jiang, J.L. Zhou, H. Zhang, M.H. Yu, Highly improving the mechanical and thermal properties of epoxy resin via blending with polyetherketone cardo, Composites Communications. 13 (2019) 80-84.
DOI: 10.1016/j.coco.2019.03.003
Google Scholar
[3]
S.C. Zunjarrao, R.P Singh, Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles, Composites Science and Technology. 66 (2006) 2296-2305.
DOI: 10.1016/j.compscitech.2005.12.001
Google Scholar
[4]
I. Srikanth, S. Kumar, A. Kumar, P. Ghosal, C Subrahmanyam, Effect of amino functionalized MWCNT on the crosslink density, fracture toughness of epoxy and mechanical properties of carbon–epoxy composites, Composites Part A: Applied Science and Manufacturing. 43 (2012) 2083-2086.
DOI: 10.1016/j.compositesa.2012.07.005
Google Scholar
[5]
N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury , G.H. Liaghat, S. Vahid, Improving the fracture toughness and the strength of epoxy using nanomaterials–a review of the current status, Nanoscale. 7 (2015) 10294-10329.
DOI: 10.1039/c5nr01354b
Google Scholar
[6]
J. Zhao, J.L. Zhang, L. Wang, S.S. Lyu, W.L. Ye, B.B. Xu, H. Qiu, L.X. Chen, J.W. Gu, Fabrication and investigation on ternary heterogeneous MWCNT@ TiO2-C fillers and their silicone rubber wave-absorbing composites, Composites Part A: Applied Science and Manufacturing. 129 (2020) 105714.
DOI: 10.1016/j.compositesa.2019.105714
Google Scholar
[7]
C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Shi, J.W. Gu, Ultra-light MXene aerogel/wood-derived porous Carbon composites with wall-like Mortar/Brick, structures for electromagnetic interference shielding, Science Bulletin.
DOI: 10.1016/j.scib.2020.02.009
Google Scholar
[8]
Y.J. Kou, W.Y. Zhou, B. Li, L.N. Dong, Y.E. Duan, Q.W. Hou, X.R. Liu, H.W. Cai, Q.G. Chen, Z.M. Dang, Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene, Composites Part A: Applied Science and Manufacturing. 114 (2018) 97-106.
DOI: 10.1016/j.compositesa.2018.08.016
Google Scholar
[9]
Z.H. Qi, Y.F. Tan, L. Gao, C.Q. Zhang, L.L. Wang, C.F. Xiao, Effects of hyperbranched polyamide functionalized graphene oxide on curing behaviour and mechanical properties of epoxy composites, Polymer Testing. 71 (2018) 145-155.
DOI: 10.1016/j.polymertesting.2018.08.029
Google Scholar
[10]
Z.R. Lin, Y.H. Cong, B.Y. Zhang, H.Z. Huang, Synthesis and characterisation of a novel Y-shaped liquid crystalline epoxy and its effect on isotropic epoxy resin, Liquid Crystals. 46 (2019). 1-11.
DOI: 10.1080/02678292.2018.1545935
Google Scholar
[11]
X.H. Liu, W. Liu, Q. Xia, J.H. Feng, Y.P. Qiu, F.J. Xu, Highly tough and strain sensitive plasma functionalized carbon nanotube/epoxy composites, Composites Part A: Applied Science and Manufacturing. 121 (2019) 123-129.
DOI: 10.1016/j.compositesa.2019.03.015
Google Scholar
[12]
X. Fei, W. Wei, F. Zhao,Y. Zhu, J. Luo, M. Chen, X. Liu, Efficient Toughening of Epoxy– Anhydride Thermosets with a Biobased Tannic Acid Derivative, ACS Sustainable Chemistry & Engineering. 5 (2017) 596-603.
DOI: 10.1021/acssuschemeng.6b01967
Google Scholar
[13]
J. Huang, X. Nie, A simple and novel method to design flexible and transparent epoxy resin with tunable mechanical properties, Polymer International. 65 (2016) 835-840.
DOI: 10.1002/pi.5144
Google Scholar
[14]
M.Q. Jiang, Y. Liu, C. Cheng, J.L. Zhou, B.H. Liu, M.H. Yu, H. Zhang, Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone, Polymer Testing. 69 (2018) 302-309.
DOI: 10.1016/j.polymertesting.2018.05.039
Google Scholar
[15]
H.Y. Deng, L. Yuan, A.J. Gu, G.Z. Liang, Facile strategy and mechanism of greatly toughening epoxy resin using polyethersulfone through controlling phase separation with microwave assisted thermal curing technique, Journal of Applied Polymer Science. 137 (2020) 48394.
DOI: 10.1002/app.48394
Google Scholar
[16]
S.M. Cai, Y. Li, H.Y. Liu, Y.W. Mai, Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites, Composites Science and Technology. 181 (2019) 107673.
DOI: 10.1016/j.compscitech.2019.05.030
Google Scholar
[17]
H.B. Gu, C. Ma, C.B. Liang, X.D. Meng, J.W. Gu, Z.H. Guo, A low loading of grafted thermoplastic polystyrene strengthens and toughens transparent epoxy composites, Journal of Materials Chemistry C. 5 (2017) 4275-4285.
DOI: 10.1039/c7tc00437k
Google Scholar
[18]
A.V Yeletsky, Hardening of polymers with single-walled carbon nanotubes. www.nanometer.ru, 2007, №9.
Google Scholar
[19]
G.S. Baronin, V.M. Buznik, O.S. Dmitriev, C.V. Zavrazhina, S.V. Mishchenko, D.O. Zavrazhin, V.V. Khudyakov, The structure and properties of fluoroplastic modified with titanium nanoparticles, AIP Conference Proceedings. 1915, 040002 (2017).
DOI: 10.1063/1.5017350
Google Scholar
[20]
G.S. Baronin, V.M. Buznik, O.S. Dmitriev, C.V. Zavrazhina, S.V. Mishchenko, D.O. Zavrazhin, V.V. Khudyakov, Thermophysical properties of fluoropolymer composites with cobalt nanoparticles, AIP Conference Proceedings.1915, 040003 (2017).
DOI: 10.1063/1.5017351
Google Scholar
[21]
V.E. Panin, V.P. Sergeev, A.V. Panin, Yu.I. Pochivalov, Nanostructuring of surface layers and production of nanostructured coatings as an effective method of strengthening modern structural and tool materials, Physics of Metals and Metallography. 104(6), (2007), 627-636.
DOI: 10.1134/s0031918x07120113
Google Scholar
[22]
G.S. Baronin, V.M. Buznik, G.Y. Yurkov, D.O. Zavrazhin, D.E. Kobzev, V.V. Khudyakov, Y.V. Mescheryakova, A.S. Fionov, E.A.f Ovchenkov, A.A. Ashmarin, M.I. Biryukova, Study of structure and properties of polymer composites based on polytetrafluoroethylene and cobalt nanoparticles, Inorganic Materials: Applied Research. 6 (2), (2015). 179-186.
DOI: 10.1134/s2075113315020057
Google Scholar
[23]
J. Huang, N. Li, L. Xiao, H. Liu, Y. Wang, J. Chen, Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold via self-assembly, Journal of Materials Chemistry A. 7 (2019) 15731-15740.
DOI: 10.1039/c9ta04256c
Google Scholar
[24]
J.W. Liu, C. Chen, Y.Z. Feng, Y.G. Liao, Y.S. Ye, X.L. Xie, Y.W. Mai, Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface, Acs Applied Materials & Interfaces. 10 (2018) 1204-1216.
DOI: 10.1021/acsami.7b14767
Google Scholar
[25]
K.L. White, H.J. Sue, Electrical conductivity and fracture behavior of epoxy/polyamide‐ 12/multiwalled carbon nanotube composites. Polymer Engineering & Science, 51 (2011) 2245-2253.
DOI: 10.1002/pen.21996
Google Scholar
[26]
Z. Chen, J. Luo, Z. Huang, C. Cai, R. Tusiime, Z. Li, H. Wang, C. Cheng, Y. Liu, Z. Sun, H. Zhang, J. Yu, Synergistic toughen epoxy resin by incorporation of polyetherimide and amino groups grafted MWCNTs. Composites Communications, 100377 (2020).
DOI: 10.1016/j.coco.2020.100377
Google Scholar
[27]
A.G. Tkachev, Investigation of methods for improving the activity of catalysts for producing nanostructured carbon materials, Theor. Found. Chem. Eng. 43 (2009) 739.
DOI: 10.1134/s0040579509050212
Google Scholar
[28]
E.A. Burakova, T.P. Dyachkova, A.V. Rukhov, E.N. Tugolukov, E.V. Galunin, A.G. Tkachev, Al Arsh Basheer, Imran Ali, Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. Journal of Molecular Liquids, Vol. 253 (2018), 340-346.
DOI: 10.1016/j.molliq.2018.01.062
Google Scholar