Nanomodified Epoxy Materials with Improved Operating Characteristics

Article Preview

Abstract:

The purpose of the work is to develop new polymer composite nanomodified materials for the restoration of hull parts of agricultural machinery.As a result of research, a comparative analysis of the properties of composites based on epoxy resin ED-20 with the addition of 0.1-1.5 mass parts of carbon nanotubes “Taunit-M” obtained by free casting and direct pressing was carried out. The effectiveness of the developed compositions is proved when using them as binders in the production of fiber-reinforced composites.It was found that the introduction of 0.5 to 1 mass. parts CNT "Taunit" allows you to increase the strength characteristics of the resin ED-20 1.5-4 times with uniaxial tension, 2-2.5 times with three-point bending and reduce weight wear by 5-10 times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-143

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Ravichandran, G. Rathnakar, N. Santhosh, Effect of heat treated HNT on physico-mechanical properties of epoxy nanocomposites, Composites Communications. 13 (2019) 42-46.

DOI: 10.1016/j.coco.2019.02.005

Google Scholar

[2] S. Zhou, Z.G. Chen, R. Tusiime, C.Cheng, Z.Y. Sun, L. Xu, Y. Liu, M.Q. Jiang, J.L. Zhou, H. Zhang, M.H. Yu, Highly improving the mechanical and thermal properties of epoxy resin via blending with polyetherketone cardo, Composites Communications. 13 (2019) 80-84.

DOI: 10.1016/j.coco.2019.03.003

Google Scholar

[3] S.C. Zunjarrao, R.P Singh, Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles, Composites Science and Technology. 66 (2006) 2296-2305.

DOI: 10.1016/j.compscitech.2005.12.001

Google Scholar

[4] I. Srikanth, S. Kumar, A. Kumar, P. Ghosal, C Subrahmanyam, Effect of amino functionalized MWCNT on the crosslink density, fracture toughness of epoxy and mechanical properties of carbon–epoxy composites, Composites Part A: Applied Science and Manufacturing. 43 (2012) 2083-2086.

DOI: 10.1016/j.compositesa.2012.07.005

Google Scholar

[5] N. Domun, H. Hadavinia, T. Zhang, T. Sainsbury , G.H. Liaghat, S. Vahid, Improving the fracture toughness and the strength of epoxy using nanomaterials–a review of the current status, Nanoscale. 7 (2015) 10294-10329.

DOI: 10.1039/c5nr01354b

Google Scholar

[6] J. Zhao, J.L. Zhang, L. Wang, S.S. Lyu, W.L. Ye, B.B. Xu, H. Qiu, L.X. Chen, J.W. Gu, Fabrication and investigation on ternary heterogeneous MWCNT@ TiO2-C fillers and their silicone rubber wave-absorbing composites, Composites Part A: Applied Science and Manufacturing. 129 (2020) 105714.

DOI: 10.1016/j.compositesa.2019.105714

Google Scholar

[7] C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Shi, J.W. Gu, Ultra-light MXene aerogel/wood-derived porous Carbon composites with wall-like Mortar/Brick, structures for electromagnetic interference shielding, Science Bulletin.

DOI: 10.1016/j.scib.2020.02.009

Google Scholar

[8] Y.J. Kou, W.Y. Zhou, B. Li, L.N. Dong, Y.E. Duan, Q.W. Hou, X.R. Liu, H.W. Cai, Q.G. Chen, Z.M. Dang, Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene, Composites Part A: Applied Science and Manufacturing. 114 (2018) 97-106.

DOI: 10.1016/j.compositesa.2018.08.016

Google Scholar

[9] Z.H. Qi, Y.F. Tan, L. Gao, C.Q. Zhang, L.L. Wang, C.F. Xiao, Effects of hyperbranched polyamide functionalized graphene oxide on curing behaviour and mechanical properties of epoxy composites, Polymer Testing. 71 (2018) 145-155.

DOI: 10.1016/j.polymertesting.2018.08.029

Google Scholar

[10] Z.R. Lin, Y.H. Cong, B.Y. Zhang, H.Z. Huang, Synthesis and characterisation of a novel Y-shaped liquid crystalline epoxy and its effect on isotropic epoxy resin, Liquid Crystals. 46 (2019). 1-11.

DOI: 10.1080/02678292.2018.1545935

Google Scholar

[11] X.H. Liu, W. Liu, Q. Xia, J.H. Feng, Y.P. Qiu, F.J. Xu, Highly tough and strain sensitive plasma functionalized carbon nanotube/epoxy composites, Composites Part A: Applied Science and Manufacturing. 121 (2019) 123-129.

DOI: 10.1016/j.compositesa.2019.03.015

Google Scholar

[12] X. Fei, W. Wei, F. Zhao,Y. Zhu, J. Luo, M. Chen, X. Liu, Efficient Toughening of Epoxy– Anhydride Thermosets with a Biobased Tannic Acid Derivative, ACS Sustainable Chemistry & Engineering. 5 (2017) 596-603.

DOI: 10.1021/acssuschemeng.6b01967

Google Scholar

[13] J. Huang, X. Nie, A simple and novel method to design flexible and transparent epoxy resin with tunable mechanical properties, Polymer International. 65 (2016) 835-840.

DOI: 10.1002/pi.5144

Google Scholar

[14] M.Q. Jiang, Y. Liu, C. Cheng, J.L. Zhou, B.H. Liu, M.H. Yu, H. Zhang, Enhanced mechanical and thermal properties of monocomponent high performance epoxy resin by blending with hydroxyl terminated polyethersulfone, Polymer Testing. 69 (2018) 302-309.

DOI: 10.1016/j.polymertesting.2018.05.039

Google Scholar

[15] H.Y. Deng, L. Yuan, A.J. Gu, G.Z. Liang, Facile strategy and mechanism of greatly toughening epoxy resin using polyethersulfone through controlling phase separation with microwave assisted thermal curing technique, Journal of Applied Polymer Science. 137 (2020) 48394.

DOI: 10.1002/app.48394

Google Scholar

[16] S.M. Cai, Y. Li, H.Y. Liu, Y.W. Mai, Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites, Composites Science and Technology. 181 (2019) 107673.

DOI: 10.1016/j.compscitech.2019.05.030

Google Scholar

[17] H.B. Gu, C. Ma, C.B. Liang, X.D. Meng, J.W. Gu, Z.H. Guo, A low loading of grafted thermoplastic polystyrene strengthens and toughens transparent epoxy composites, Journal of Materials Chemistry C. 5 (2017) 4275-4285.

DOI: 10.1039/c7tc00437k

Google Scholar

[18] A.V Yeletsky, Hardening of polymers with single-walled carbon nanotubes. www.nanometer.ru, 2007, №9.

Google Scholar

[19] G.S. Baronin, V.M. Buznik, O.S. Dmitriev, C.V. Zavrazhina, S.V. Mishchenko, D.O. Zavrazhin, V.V. Khudyakov, The structure and properties of fluoroplastic modified with titanium nanoparticles, AIP Conference Proceedings. 1915, 040002 (2017).

DOI: 10.1063/1.5017350

Google Scholar

[20] G.S. Baronin, V.M. Buznik, O.S. Dmitriev, C.V. Zavrazhina, S.V. Mishchenko, D.O. Zavrazhin, V.V. Khudyakov, Thermophysical properties of fluoropolymer composites with cobalt nanoparticles, AIP Conference Proceedings.1915, 040003 (2017).

DOI: 10.1063/1.5017351

Google Scholar

[21] V.E. Panin, V.P. Sergeev, A.V. Panin, Yu.I. Pochivalov, Nanostructuring of surface layers and production of nanostructured coatings as an effective method of strengthening modern structural and tool materials, Physics of Metals and Metallography. 104(6), (2007), 627-636.

DOI: 10.1134/s0031918x07120113

Google Scholar

[22] G.S. Baronin, V.M. Buznik, G.Y. Yurkov, D.O. Zavrazhin, D.E. Kobzev, V.V. Khudyakov, Y.V. Mescheryakova, A.S. Fionov, E.A.f Ovchenkov, A.A. Ashmarin, M.I. Biryukova, Study of structure and properties of polymer composites based on polytetrafluoroethylene and cobalt nanoparticles, Inorganic Materials: Applied Research. 6 (2), (2015). 179-186.

DOI: 10.1134/s2075113315020057

Google Scholar

[23] J. Huang, N. Li, L. Xiao, H. Liu, Y. Wang, J. Chen, Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold via self-assembly, Journal of Materials Chemistry A. 7 (2019) 15731-15740.

DOI: 10.1039/c9ta04256c

Google Scholar

[24] J.W. Liu, C. Chen, Y.Z. Feng, Y.G. Liao, Y.S. Ye, X.L. Xie, Y.W. Mai, Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface, Acs Applied Materials & Interfaces. 10 (2018) 1204-1216.

DOI: 10.1021/acsami.7b14767

Google Scholar

[25] K.L. White, H.J. Sue, Electrical conductivity and fracture behavior of epoxy/polyamide‐ 12/multiwalled carbon nanotube composites. Polymer Engineering & Science, 51 (2011) 2245-2253.

DOI: 10.1002/pen.21996

Google Scholar

[26] Z. Chen, J. Luo, Z. Huang, C. Cai, R. Tusiime, Z. Li, H. Wang, C. Cheng, Y. Liu, Z. Sun, H. Zhang, J. Yu, Synergistic toughen epoxy resin by incorporation of polyetherimide and amino groups grafted MWCNTs. Composites Communications, 100377 (2020).

DOI: 10.1016/j.coco.2020.100377

Google Scholar

[27] A.G. Tkachev, Investigation of methods for improving the activity of catalysts for producing nanostructured carbon materials, Theor. Found. Chem. Eng. 43 (2009) 739.

DOI: 10.1134/s0040579509050212

Google Scholar

[28] E.A. Burakova, T.P. Dyachkova, A.V. Rukhov, E.N. Tugolukov, E.V. Galunin, A.G. Tkachev, Al Arsh Basheer, Imran Ali, Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. Journal of Molecular Liquids, Vol. 253 (2018), 340-346.

DOI: 10.1016/j.molliq.2018.01.062

Google Scholar