Effect of Wood Filler Concentration on Physical and Mechanical Properties of PLA-Based Composites

Article Preview

Abstract:

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. R. Safin, G. A. Talipova, N. R. Galyavetdinov, Design of packaging materials based on polylactide and wood filler, International Journal of Engineering and Technology (UAE). (2018) 1089-1091.

DOI: 10.14419/ijet.v7i4.36.25036

Google Scholar

[2] Y. Li, H. Shimizu, Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Vol. 7 (2007) 921-928.

DOI: 10.1002/mabi.200700027

Google Scholar

[3] R. R. Khasanshin, R. R. Safin, E. Y. Razumov, High temperature treatment of birch plywood in the sparse environment for the creation of a waterproof construction veneer, Procedia Engineering. (2016) 1541-1546.

DOI: 10.1016/j.proeng.2016.07.108

Google Scholar

[4] L. Averous, C. Fringant, O. Martin, Coextrusion of biodegradable starch-based materials. In: Biopolymer Science: Food and Non-Food Applications, Paris. (1999) 207-212.

Google Scholar

[5] E. Y. Razumov, R. R. Safin, S. Š. Barcík, M. Kvietková, K. R. Romelevich, Studies on mechanical properties of composite materials based on thermo modified timber, Drvna Industrija. (2013) 3-8.

DOI: 10.5552/drind.2013.1206

Google Scholar

[6] T. Qiang, D. Yu, H. Gao, Y. Wang, Polylactide – Based Wood Plastic Composites Toughened with SBS. Vol. 51 (2012) 193-198.

DOI: 10.1080/03602559.2011.618518

Google Scholar

[7] N. R. Galyavetdinov, R. R. Safin, A. E. Voronin, Analysis of physico-mechanical properties of composites based on polylactide and thermally modified wood fibers, Materials Science Forum. (2016) 202-206.

DOI: 10.4028/www.scientific.net/msf.870.202

Google Scholar

[8] S. Butylina, Comparison of water absorption and mechanical properties of wood–plastic composites made from polypropylene and polylactic acid, Wood Material Science & Engineering. 5:3-4 (2010) 220-228.

DOI: 10.1080/17480272.2010.532233

Google Scholar

[9] A. A. Fomin, V. G. Gusev, R. G. Safin, R. R. Safin, Dispersion of the margin removed in complex milling, Russian Engineering Research. 35(6) (2015) 417-420.

DOI: 10.3103/s1068798x15060040

Google Scholar

[10] R. R Safin, R. R. Khasanshin, S. R. Mukhametzyanov, Influence of technical parameters of disk-shaped reactor on productivity of heat treatment of crushed wood, IOP Conference Series: Materials Science and Engineering. 327(4) (2018) 042095.

DOI: 10.1088/1757-899x/327/4/042095

Google Scholar

[11] C. E. Holy, S. M. Dang, J. E. Davies, M. S. Shoichet, In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. J. Biomaterials. Vol. 20(13) (1999) 1177-85.

DOI: 10.1016/s0142-9612(98)00256-7

Google Scholar

[12] N. R. Galyavetdinov, R. R. Khasanshin, R. R .Safin, R. G. Safin, E. Y. Razumov, The usage of wood wastes in the manufacture of composite materials, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 1(4) (2015) 779-786.

DOI: 10.5593/sgem2015/b41/s18.101

Google Scholar

[13] A. H. Shayakhmetova, F. V. Nazipova, R. R. Safin, A. L. Timerbaeva, A. V. Safina, Alternative types of solid biofuels and their comparative characteristics, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. SGEM. 1(4) (2015) 53-58.

DOI: 10.5593/sgem2015/b41/s17.007

Google Scholar

[14] R. R. Safin, I. F. Khakimzyanov, Sh. R. Mukhametzyanov, Non-volatile Facility for Vacuum Drying of Thermolabile Materials, Procedia Engineering. 206 (2017) 1063-1068.

DOI: 10.1016/j.proeng.2017.10.595

Google Scholar

[15] T. Qiang, Polylactide-Based Wood Plastic Composites Modified with Linear Low Density Polyethylene, Polymer-Plastics Technology and Engineering. 52:2 (2013) 149-156.

DOI: 10.1080/03602559.2012.734359

Google Scholar

[16] A. A. Fomin, Kinematics of surface formation in milling, Russian Engineering Research, C. (2013) 660-662.

Google Scholar

[17] A. R. Shaikhutdinova, R. R. Safin, F. V. Nazipova, Thermal modification of wood in production of finishing materials, Solid State Phenomena. 265 SSP (2017) 171-176.

DOI: 10.4028/www.scientific.net/ssp.265.171

Google Scholar

[18] J. Pilipovic-Crcic, I. Jalsenjan, Albumin-loaded PLA and PLGA microspheres: in vitro evalution, J. Boll Chim Foam. Vol. 138(1) (1999) 124-94.

Google Scholar

[19] H. Peltoniem, D. Hallikainem, T. Towonen, T. Waris, SR-PLLA and SR-PGA miniscrew. J. Craniomaxillofac, Surg, Vol. 27(1) (1999) 42-50.

Google Scholar

[20] W. L. Murfy, D. N. Kohn, D. H. Mooney, Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res, Vol. 50(1) (2000) 186-94.

DOI: 10.1002/(sici)1097-4636(200004)50:1<50::aid-jbm8>3.0.co;2-f

Google Scholar

[21] N. R. Galyavetdinov, G. A. Talipova, R. R. Safin, Study of the destructive properties of biodegradable wood-filled composite material, Materials Science Forum. Vol. 992 (2020) 290-295.

DOI: 10.4028/www.scientific.net/msf.992.290

Google Scholar

[22] G. A. Sabirova, R. R. Safin, N. R. Galyavetdinov, A. R. Shaikhutdinova, Research of biodegradable wood completed composite materials based on polylactide, Journal of Physics: Conference Series. Vol. 1399 (2019).

DOI: 10.1088/1742-6596/1399/4/044117

Google Scholar

[23] R. R. Safin, G. A. Talipova, N. R. Galyavetdinov, F. V. Nazipova, R. V. Salimgaraeva, The study of the destructive properties of wood- filled composites for the production of biodegradable packaging materials, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. Vol. 19 (2019) 541-546.

DOI: 10.5593/sgem2019/4.1/s17.069

Google Scholar

[24] R. R. Safin, I. F. Khakimzyanov, N. R. Galyavetdinov, S. R. Mukhametzyanov, Gasification of torrefied fuel at power generation for decentralized consumers, IOP Conference Series: Earth and Environmental Science. 87(3) (2017) 032035.

DOI: 10.1088/1755-1315/87/3/032035

Google Scholar