Towards a Strategy for the Synthesis of Polymeric Ionic Liquids with a Bulk Anion in Various Reaction Media

Article Preview

Abstract:

The interest in polymerizable ionic liquids of researchers is due to their unique properties, such as good thermal stability, low vapor pressure, and wide potential window of stability. The complex of these properties determines the prospect of using ionic liquids and polymers based on them in the technology of membrane separation. This article describes the synthesis of monomeric ionic liquids (IL) containing quaternary amino groups, pyridine, and imidazole groups based on vinyl benzyl chloride (conversion was 95%). Further, on their basis, polymer ionic liquids were obtained by the method of free radical polymerization with bulky anionic substituents. Proof of the formation of polimeric IL was carried out by NMR and FTIR spectroscopy methods. The molecular weight of the IL was determined by gel permeation chromatography and reached ~ 140,000. An anion exchange reaction was carried out to replace the Cl anion with Tf2N.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-104

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Shaplov, D.O. Ponkratov, P.S. Vlasov, E.I. Lozinskaya, L.I. Komarova, I.A. Malyshkina, F. Vidal, G.T.M. Nguyen, M. Armand, C. Wandrey, Y.S. Vygodskii, Synthesis and properties of polymeric analogs of ionic liquids, Polym. Sci. - Ser. B. 55 (2013) 122–138. https://doi.org/10.1134/S1560090413030044.

DOI: 10.1134/s1560090413030044

Google Scholar

[2] J. Yoon, H.-J. Lee, C.M. Stafford, Thermoplastic Elastomers Based on Ionic Liquid and Poly(vinyl alcohol), Macromolecules. 44 (2011). https://doi.org/10.1021/ma102682k.

DOI: 10.1021/ma102682k

Google Scholar

[3] Y. Yang, H. Gao, F. Lu, L. Zheng, Preparation and characterization of composite membranes with Brønsted acidic ionic liquid, Colloid Polym. Sci. 292 (2014) 2831–2839. https://doi.org/10.1007/s00396-014-3324-7.

DOI: 10.1007/s00396-014-3324-7

Google Scholar

[4] C.W. Liew, S. Ramesh, A.K. Arof, Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties, in: Int. J. Hydrogen Energy, Pergamon, 2014: p.2953–2963. https://doi.org/10.1016/j.ijhydene.2013.06.061.

DOI: 10.1016/j.ijhydene.2013.06.061

Google Scholar

[5] E. Rynkowska, K. Fatyeyeva, W. Kujawski, Application of polymer-based membranes containing ionic liquids in membrane separation processes: A critical review, Rev. Chem. Eng. 34 (2018) 341–363. https://doi.org/10.1515/revce-2016-0054.

DOI: 10.1515/revce-2016-0054

Google Scholar

[6] C.W. Liew, S. Ramesh, A.K. Arof, A novel approach on ionic liquid-based poly(vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications, in: Int. J. Hydrogen Energy, Pergamon, 2014: p.2917–2928. https://doi.org/10.1016/j.ijhydene.2013.07.092.

DOI: 10.1016/j.ijhydene.2013.07.092

Google Scholar

[7] A.I. Akhmetshina, N.R. Yanbikov, A.A. Atlaskin, M.M. Trubyanov, A. Mechergui, K. V. Otvagina, E.N. Razov, A.E. Mochalova, I. V. Vorotyntsev, Acidic gases separation from gas mixtures on the supported ionic liquid membranes providing the facilitated and solution-diffusion transport mechanisms, Membranes (Basel). 9 (2019) 1–14. https://doi.org/10.3390/membranes9010009.

DOI: 10.3390/membranes9010009

Google Scholar

[8] I.M. Davletbaeva, G.R. Nurgaliyeva, A.I. Akhmetshina, R.S. Davletbaev, A.A. Atlaskin, T.S. Sazanova, S. V. Efimov, V. V. Klochkov, I. V. Vorotyntsev, Porous polyurethanes based on hyperbranched amino ethers of boric acid, RSC Adv. 6 (2016) 111109–111119. https://doi.org/10.1039/C6RA21638B.

DOI: 10.1039/c6ra21638b

Google Scholar

[9] P. Izák, M. Köckerling, U. Kragl, Stability and selectivity of a multiphase membrane, consisting of dimethylpolysiloxane on an ionic liquid, used in the separation of solutes from aqueous mixtures by pervaporation, Green Chem. 8 (2006) 947–94. https://doi.org/10.1039/b608114b.

DOI: 10.1039/b608114b

Google Scholar

[10] A. Samadi, R.K. Kemmerlin, S.M. Husson, Polymerized ionic liquid sorbents for CO2 separation, Energy and Fuels. 24 (2010) 5797–5804. https://doi.org/10.1021/ef101027s.

DOI: 10.1021/ef101027s

Google Scholar

[11] M. Díaz, A. Ortiz, I. Ortiz, Progress in the use of ionic liquids as electrolyte membranes in fuel cells, J. Memb. Sci. 469 (2014) 379–396. https://doi.org/10.1016/j.memsci.2014.06.033.

DOI: 10.1016/j.memsci.2014.06.033

Google Scholar

[12] C.W. Liew, K.H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, Electrical and structural studies of ionic liquid-based poly(vinyl alcohol) proton conductors, J. Non. Cryst. Solids. 425 (2015) 163–172. https://doi.org/10.1016/j.jnoncrysol.2015.06.008.

DOI: 10.1016/j.jnoncrysol.2015.06.008

Google Scholar

[13] Y. Gu, T.P. Lodge, Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block, Macromolecules. 44 (2011) 1732–1736. https://doi.org/10.1021/ma2001838.

DOI: 10.1021/ma2001838

Google Scholar

[14] P. Bernardo, J.C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Kačírková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, in: Sep. Purif. Technol., Elsevier, (2012) 73–82. https://doi.org/10.1016/j.seppur.2012.02.041.

DOI: 10.1016/j.seppur.2012.02.041

Google Scholar

[15] K. Friess, J.C. Jansen, F. Bazzarelli, P. Izák, V. Jarmarová, M. Kačírková, J. Schauer, G. Clarizia, P. Bernardo, High ionic liquid content polymeric gel membranes: Correlation of membrane structure with gas and vapour transport properties, J. Memb. Sci. 415–416 (2012) 801–809. https://doi.org/10.1016/j.memsci.2012.05.072.

DOI: 10.1016/j.memsci.2012.05.072

Google Scholar

[16] T. Yasuda, S.I. Nakamura, Y. Honda, K. Kinugawa, S.Y. Lee, M. Watanabe, Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications, ACS Appl. Mater. Interfaces. 4 (2012) 1783–1790. https://doi.org/10.1021/am300031k.

DOI: 10.1021/am300031k

Google Scholar

[17] H.R. Cascon, S.K. Choudhari, 1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes, J. Memb. Sci. 429 (2013) 214–224. https://doi.org/10.1016/j.memsci.2012.11.028.

DOI: 10.1016/j.memsci.2012.11.028

Google Scholar

[18] J.C. Jansen, G. Clarizia, P. Bernardo, F. Bazzarelli, K. Friess, A. Randová, J. Schauer, D. Kubicka, M. Kacirková, P. Izak, Gas transport properties and pervaporation performance of fluoropolymer gel membranes based on pure and mixed ionic liquids, Sep. Purif. Technol. 109 (2013) 87–97. https://doi.org/10.1016/j.seppur.2013.02.034.

DOI: 10.1016/j.seppur.2013.02.034

Google Scholar

[19] M. Díaz, A. Ortiz, M. Vilas, E. Tojo, I. Ortiz, Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes, in: Int. J. Hydrogen Energy, Pergamon, 2014: p.3970–3977. https://doi.org/10.1016/j.ijhydene.2013.04.155.

DOI: 10.1016/j.ijhydene.2013.04.155

Google Scholar

[20] M. Díaz, A. Ortiz, M. Isik, D. Mecerreyes, I. Ortiz, Highly conductive electrolytes based on poly([HSO3-BVIm][TfO])/[HSO3-BMIm][TfO] mixtures for fuel cell applications, Int. J. Hydrogen Energy. 40 (2014) 11294–11302. https://doi.org/10.1016/j.ijhydene.2015.03.109.

DOI: 10.1016/j.ijhydene.2015.03.109

Google Scholar

[21] J.E. Bara, S. Lessmann, C.J. Gabriel, E.S. Hatakeyama, R.D. Noble, D.L. Gin, Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes, Ind. Eng. Chem. Res. 46 (2007) 5397–5404. https://doi.org/10.1021/ie0704492.

DOI: 10.1021/ie0704492

Google Scholar

[22] M.G. Cowan, D.L. Gin, R.D. Noble, Poly(ionic liquid)/Ionic Liquid Ion-Gels with High free, Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations, Acc. Chem. Res. 49 (2016) 724–732. https://doi.org/10.1021/acs.accounts.5b00547.

DOI: 10.1021/acs.accounts.5b00547

Google Scholar

[23] O.V. Bashkov, A.A. Popkova, G.A. Gadoev, T.I. Bashkova, D.B. Solovev, Construction of a Generalized Fatigue Diagram of Metallic Materials, Materials Science Forum, Vol. 945, (2019) 563-568. [Online] Available: https://doi.org/10.4028/www.scientific.net/MSF.945.563.

DOI: 10.4028/www.scientific.net/msf.945.563

Google Scholar