Thermal Decomposition Characteristics of Poly((4-Vinylbenzyl) Trimethylammonium Bis (Trifluoromethanesulfonimide)) Studied by Pyrolysis-GS / MS

Article Preview

Abstract:

Over the past decades, significant advances have been made in the development and research of gas separation membranes based on ionic liquids (IL) and their polymer analogs (PIL) for membrane separation of "acid gases" such as CO2 and H2S from gas mixtures. Polymers containing various amino groups are of great interest for the selective separation of acid gases from gas mixtures, since ammonia and its derivatives are used in conventional purification. In this work, we have synthesized a monomeric ionic liquid based on 4 vinylbenzyl chloride with included triethylamine by the Menshutkin reaction. Further, on its basis, polymer ionic liquids were obtained by the method of free radical polymerization, then an anion exchange reaction was carried out to replace the Cl anion with Tf2N. To analyze the process of thermal pyrolysis of poly [VBTEA-Tf2N] a pyrolysis-gas chromatography/mass spectrometer (Py-GC/MS) was employed in this research. The obtained materials, which are high molecular weight compounds, can be used to obtain polymer membranes of various architectures by traditional methods: both non-porous symmetric membranes and microporous asymmetric membranes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-97

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.N. Marsh, J.A. Boxall, R. Lichtenthaler, Room temperature ionic liquids and their mixtures - A review, in: Fluid Phase Equilib., Elsevier, 2004, p.93–98. https://doi.org/10.1016/j.fluid.2004.02.003.

DOI: 10.1016/j.fluid.2004.02.003

Google Scholar

[2] J.P. Hallett, T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2, Chem. Rev. 111 (2011) 3508–3576. https://doi.org/10.1021/cr1003248.

DOI: 10.1021/cr1003248

Google Scholar

[3] A.I. Akhmetshina, N.R. Yanbikov, A.A. Atlaskin, M.M. Trubyanov, A. Mechergui, K. V. Otvagina, E.N. Razov, A.E. Mochalova, I. V. Vorotyntsev, Acidic gases separation from gas mixtures on the supported ionic liquid membranes providing the facilitated and solution-diffusion transport mechanisms, Membranes (Basel). 9 (2019) 1–14. https://doi.org/10.3390/membranes9010009.

DOI: 10.3390/membranes9010009

Google Scholar

[4] J. Yuan, M. Antonietti, Poly(ionic liquid)s: Polymers expanding classical property profiles, Polymer (Guildf). 52 (2011) 1469–1482. https://doi.org/10.1016/j.polymer.2011.01.043.

DOI: 10.1016/j.polymer.2011.01.043

Google Scholar

[5] I.M. Davletbaeva, G.R. Nurgaliyeva, A.I. Akhmetshina, R.S. Davletbaev, A.A. Atlaskin, T.S. Sazanova, S. V. Efimov, V. V. Klochkov, I. V. Vorotyntsev, Porous polyurethanes based on hyperbranched amino ethers of boric acid, RSC Adv. 6 (2016) 111109–111119. https://doi.org/10.1039/C6RA21638B.

DOI: 10.1039/c6ra21638b

Google Scholar

[6] M. Li, L. Yang, S. Fang, S. Dong, Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature, J. Memb. Sci. 366 (2011) 245–250. https://doi.org/10.1016/j.memsci.2010.10.004.

DOI: 10.1016/j.memsci.2010.10.004

Google Scholar

[7] A.L. Pont, R. Marcilla, I. De Meatza, H. Grande, D. Mecerreyes, Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes, J. Power Sources. 188 (2009) 558–563. https://doi.org/10.1016/j.jpowsour.2008.11.115.

DOI: 10.1016/j.jpowsour.2008.11.115

Google Scholar

[8] M. Li, S. Dong, S. Fang, L. Yang, S.I. Hirano, J. Hu, X. Huang, Polymeric ionic liquid membranes as electrolytes for lithium battery applications, J. Appl. Electrochem. 42 (2012) 851–856. https://doi.org/10.1007/s10800-012-0450-0.

DOI: 10.1007/s10800-012-0450-0

Google Scholar

[9] R.L. Weber, Y. Ye, A.L. Schmitt, S.M. Banik, Y.A. Elabd, M.K. Mahanthappa, Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers, Macromolecules. 44 (2011) 5727–5735. https://doi.org/10.1021/ma201067h.

DOI: 10.1021/ma201067h

Google Scholar

[10] J. Yuan, D. Mecerreyes, M. Antonietti, Poly(ionic liquid)s: An update, Prog. Polym. Sci. 38 (2013) 1009–1036. https://doi.org/10.1016/j.progpolymsci.2013.04.002.

DOI: 10.1016/j.progpolymsci.2013.04.002

Google Scholar

[11] J.E. Bara, E.S. Hatakeyama, D.L. Gin, R.D. Noble, Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid, in: Polym. Adv. Technol., John Wiley & Sons, Ltd, 2008: p.1415–1420. https://doi.org/10.1002/pat.1209.

DOI: 10.1002/pat.1209

Google Scholar

[12] J.E. Bara, R.D. Noble, D.L. Gin, Effect of free, cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes, Ind. Eng. Chem. Res. 48 (2009) 4607–4610. https://doi.org/10.1021/ie801897r.

DOI: 10.1021/ie801897r

Google Scholar

[13] M. Li, L. Wang, B. Yang, T. Du, Y. Zhang, Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries, Electrochim. Acta. 123 (2014) 296–302. https://doi.org/10.1016/j.electacta.2013.12.179.

DOI: 10.1016/j.electacta.2013.12.179

Google Scholar

[14] A.L. Barbarini, D.A. Estenoz, D.M. Martino, Crosslinkable micelles from diblock amphiphilic copolymers based on vinylbenzyl thymine and vinylbenzyl triethylammonium chloride, J. Appl. Polym. Sci. 132 (2015) 1–10. https://doi.org/10.1002/app.41947.

DOI: 10.1002/app.41947

Google Scholar

[15] O.V. Bashkov, A.A. Bryansky, I.V. Belova, D.B. Solovev, Investigation of the Stages of Damage Accumulation in Polymer Composite Materials, Materials Science Forum, Vol. 945 (2019) 515-521 [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.945.515.

DOI: 10.4028/www.scientific.net/msf.945.515

Google Scholar