Visualization of the Effect of an Impurity on the Optical Homogeneity of Lithium Niobate Doped with Boron Cations

Article Preview

Abstract:

The laser conoscopy method confirms the high optical uniformity of LiNbO3:B crystals in the range of B2O3 concentrations from 0.008 to 1.24 mol. %. Minor signs of anomalous optical biaxiality appear in the conoscopic patterns of crystals at boron concentrations of 0.12 and 0.83 mol. % at a laser power of 90 mW. The maximum value of the angle of anomalous optical axes for the studied samples is 2V = 10 ́ for the sample (0.12 mol. %), аnd the value of anomalous birefringence corresponds to ∆n = 0.02·10-5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.S. Kuz'minov, Electro-optical and nonlinear optical crystal of lithium niobate, Nauka, Moscow. 1987 (in Russian).

Google Scholar

[2] N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum and Polaritons, Nauka, Moscow. 2003 (in Russian).

Google Scholar

[3] T. Volk, M. Wohlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Springer, Berlin, (2008).

Google Scholar

[4] S.C. Abrahams, J.M. Reddy, J.L. Bernstein, Ferroelectric lithium niobate single crystal X-ray diffraction study at 24°C, J. Phys. Chem. Sol. 27 6/7 (1966) 997-1012.3.

DOI: 10.1016/0022-3697(66)90072-2

Google Scholar

[5] A. Rauber, Chemistry and physics of lithium niobate, Current topic in materials science, ed. by E. Kaldis., Vol. 1. Amsterdam, (1978).

Google Scholar

[6] S.C. Abrahams, Properties of lithium niobate, New York, (1989).

Google Scholar

[7] M.N. Palatnikov, I.V. Biryukova, N.V. Sidorov, A.V. Denisov, V.T. Kalinnikov, P.G.R. Smith, V.Ya. Shur, Growth and concentration dependencies of rare-earth doped lithium niobate single crystals, J. Cryst. Growth. 291 (2) (2006) 390–397.

DOI: 10.1016/j.jcrysgro.2006.03.022

Google Scholar

[8] N.V. Sidorov, M.N. Palatnikov, V.T. Kalinnikov, Influence of the secondary structure on the optical properties of ferroelectric lithium niobate crystals with a low photorefractive effect, Proceedings of the Kola Scientific Center of the Russian Academy of Sciences. Chemistry and Materials Science. 5 (2015) 464- 468 (in Russian).

Google Scholar

[9] N.V. Sidorov, Yu.A. Serebryakov, The structural ordering and photorefraction in lithium niobate admixed crystals, Ferroelectrics. 160 (1994) 191-195.

DOI: 10.1080/00150199408007699

Google Scholar

[10] O.Yu. Pikoul, L.V. Alekseeva, I.V. Povh, V.I. Stroganov, K.A. Rudoy, E.V. Tolstov, V.V. Krishtop, Optical system features for observation of conoscope figures of large sizes, Journal of Instrument Engineering. 47 (2004) 53-55.

Google Scholar

[11] O.Y. Pikoul, Determination of optical sign of a crystal by conoscopic method, J. Appl. Cryst. 43 (2010) 949-954.

DOI: 10.1107/s0021889810022375

Google Scholar

[12] N.V. Sidorov, A.A. Kruk, O.Y. Pikoul, M.N. Palatnikov, N.A. Teplyakova, A.A. Yanichev, O.V. Makarova, Integrated research of structural and optical homogeneities of the lithium niobate crystal with low photorefractive effect, Optik. 126 (2015) 1081-1089.

DOI: 10.1016/j.ijleo.2015.03.018

Google Scholar

[13] O.Y. Pikoul, N.V. Sidorov, N.A. Teplyakova, M.N. Palatnikov, The laser conoscopy of lithium niobate crystals of different composition, Proc. SPIE Aisa-Pacific Conference on Fundamental Problems of Opto- and Microelectronics. (2016) 101761R.

DOI: 10.1117/12.2268148

Google Scholar

[14] F.E. Veiras, G.Pérez, M.T. Garea, L.I. Perez, Characterization of uniaxial crystals through the study of fringepatterns, J. Phys.: Conf. Ser. 274 (2011) 012030.

DOI: 10.1088/1742-6596/274/1/012030

Google Scholar

[15] A.I. Kolesnikov, R.M. Grechishkin, S.A. Tretiakov, V.Ya. Molchanov, A.I. Ivanova, E.I. Kaplunova, E.Yu. Vorontsova, Laser conoscopy of large-sized optical crystals, IOP Conf. Series: Materials Science and Engineering. 49 (2013) 012037.

DOI: 10.1088/1757-899x/49/1/012037

Google Scholar

[16] A. Bajor, L. Salbut, A. Szwedowski, Imaging conoscope for investigation of optical inhomogeneity in large boules of uniaxial crystals, Review of scientific instruments. 69 3 (1998) 1476-1487.

DOI: 10.1063/1.1148783

Google Scholar

[17] F.E. Veiras, M.T. Garea, L.I. Perez, Wide angle conoscopic interference patterns in uniaxial crystals, Appl. Opt. 51 (2012) 3081-3090.

DOI: 10.1364/ao.51.003081

Google Scholar

[18] P. Wang, Visualizing the conoscopic isochromatic interference fringes in anisotropic crystals by spinning polarizer and analyzer, Opt. Lett. 37 (2012) 4392-4394.

DOI: 10.1364/ol.37.004392

Google Scholar

[19] L. Montalto, N. Paone, L. Scalise, D. Rinaldi, A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging, Review of scientific instruments. 86 (2015) 063102.

DOI: 10.1063/1.4921870

Google Scholar

[20] M. Palatnikov, O. Pikoul, N. Sidorov, O. Makarova, K. Bormanis, Conoscopic studies of optical homogeneity of the LiNbO3:Mg crystals, Ferroelectrics. 436 (2012) 19-28.

DOI: 10.1080/10584587.2012.730953

Google Scholar