[1]
M.M. McCafferty, G.A. Burke, B.J. Meenan, Mesenchymal stem cell response to conformal sputter deposited calcium phosphate thin films on nanostructured titanium surfaces, J. Biomed. Mater. Res. A. 102 (2014) 3585-3597.
DOI: 10.1002/jbm.a.35018
Google Scholar
[2]
L.S. Litvinova, V.V. Shupletsova, O.G. Khaziakhmatova, K.A. Yurova, V.V. Malashchenko, E.S. Melashchenko, N.M. Todosenko, M.Yu. Khlusova, Yu.P. Sharkeev, E.G. Komarova, M.B. Sedelnikova, E.O. Shunkin, I.A. Khlusov, Behavioral Changes of Multipotent Mesenchymal Stromal Cells in Contact with Synthetic Calcium Phosphates in vitro, Cell and tissue biology. 12 (2018) 112–119.
DOI: 10.1134/s1990519x18020062
Google Scholar
[3]
S. Ponader, E. Vairaktaris, P. Heinl, C.V. Wilmowsky, A. Rottmair, C. Korner, R.F. Singer, S. Holst, K.A. Schlegel, F.W. Neukam, E. Nkenke, Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts, J. Biomed. Mater. Res. A. 84 (2008) 1111–1119.
DOI: 10.1002/jbm.a.31540
Google Scholar
[4]
J. Uggeri, S. Guizzardi, R. Scandroglio, R. Gatti, Adhesion of human osteoblasts to titanium: a morpho-functional analysis with confocal microscopy, Micron. 41 (2010) 210–219.
DOI: 10.1016/j.micron.2009.10.013
Google Scholar
[5]
F. Luthen, R. Lange, P. Becker, J. Rychly, U. Beck, J.G. Nebe, The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells, Biomaterials. 26 (2005) 2423–2440.
DOI: 10.1016/j.biomaterials.2004.07.054
Google Scholar
[6]
P.D. Prowse, C.G. Elliott, J. Hutter, D.W. Hamilton, Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies, PLoS One. 8 (2013) e58898.
DOI: 10.1371/journal.pone.0058898
Google Scholar
[7]
A.B. Faia-Torres, S. Guimond-Lischer, M. Rottmar, M. Charnley, T. Goren, K. Maniura-Weber, N.D. Spencer, R.L. Reis, M. Textor, N.M. Neves, Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients, Biomaterials. 35 (2014) 9023–9032.
DOI: 10.1016/j.biomaterials.2014.07.015
Google Scholar
[8]
I.A. Khlusov, Y. Dekhtyar, Y.P. Sharkeev, V.F. Pichugin, M.Y. Khlusova, N. Polyaka, F. Tjulkins, V. Vendinya, E.V. Legostaeva, L.S. Litvinova, V.V. Shupletsova, O.G. Khaziakhmatova, K.A. Yurova, K.A. Prosolov. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells, Materials. 11 (2018) 978.
DOI: 10.3390/ma11060978
Google Scholar
[9]
C.H. Thomas, J.H. Collier, C.S. Sfeir, K.E. Healy, Engineering gene expression and protein synthesis by modulation of nuclear shape, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 1972–(1977).
DOI: 10.1073/pnas.032668799
Google Scholar
[10]
Y. Shafrir, G. Forgacs, Mechanotransduction through the cytoskeleton, Am. J. Physiol. Cell Physiol. 282 (2002) 479–486.
Google Scholar
[11]
P.S. Mathieu, E.G. Loboa, Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways, Send to Tissue Eng Part B Rev. 18 (2012) 436–444.
DOI: 10.1089/ten.teb.2012.0014
Google Scholar
[12]
P. Bourin, B.A. Bunnell, L. Casteilla, M. Dominici, A.J. Katz, K.L. March, H. Redl, J.P. Rubin, K. Yoshimura, J.M. Gimble, Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT), Cytotherapy. 15 (2013) 641–648.
DOI: 10.1016/j.jcyt.2013.02.006
Google Scholar
[13]
M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, Dj. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy. 8 (2006) 315–317.
DOI: 10.1080/14653240600855905
Google Scholar
[14]
P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng. 7 (2001) 211– 228.
DOI: 10.1089/107632701300062859
Google Scholar
[15]
B.L. Riggs, L.J. Melton III, Osteoporosis: Etiology, diagnosis, and management, second ed., Lippincott-Raven Publ., Philadelphia, New York, (1995).
Google Scholar
[16]
B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: an introduction to Materials in Medicine, second ed., Elsevier Academic Press, San Diego, (2004).
Google Scholar
[17]
S.V. Gnedenkov, Y.P. Scharkeev, S.L. Sinebryukhov, O.A. Khrisanfova, E.V. Legostaeva, A.G. Zavidnaya, A.V. Puz, I.A. Khlusov, Formation and Properties of Bioactive Surface Layers on Titanium, Inorganic Materials: Applied Research. 2 (2011) 474–481.
DOI: 10.1134/s2075113311050133
Google Scholar