Development of Titanium Implants with a Rough Calcium Phosphate Surface to Control the Morphofunctional State of Stem Cells

Article Preview

Abstract:

Experimental titanium implants with a rough calcium phosphate (CР) coating with bio-inspired properties have been developed. The role of roughness (in the range Ra = 2.4 - 4.6 μm) of the surface CP simulating the physicochemical features of the mineral substance of regenerating bone tissue to change the growth and morphofunctional activity of mesenchymal stem cells (MSCs) was evaluated. Titanium substrates with a microrelief CP coating bearing artificial niches for stem cells was shown in vitro to have an epigenomic effect on MSCs, that contributes to their differentiation and maturation in bone cells. The results show the promise of developing and introducing a new class of medical devices with bio-inspired surfaces into clinical practice for traumatology and orthopedics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-45

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. McCafferty, G.A. Burke, B.J. Meenan, Mesenchymal stem cell response to conformal sputter deposited calcium phosphate thin films on nanostructured titanium surfaces, J. Biomed. Mater. Res. A. 102 (2014) 3585-3597.

DOI: 10.1002/jbm.a.35018

Google Scholar

[2] L.S. Litvinova, V.V. Shupletsova, O.G. Khaziakhmatova, K.A. Yurova, V.V. Malashchenko, E.S. Melashchenko, N.M. Todosenko, M.Yu. Khlusova, Yu.P. Sharkeev, E.G. Komarova, M.B. Sedelnikova, E.O. Shunkin, I.A. Khlusov, Behavioral Changes of Multipotent Mesenchymal Stromal Cells in Contact with Synthetic Calcium Phosphates in vitro, Cell and tissue biology. 12 (2018) 112–119.

DOI: 10.1134/s1990519x18020062

Google Scholar

[3] S. Ponader, E. Vairaktaris, P. Heinl, C.V. Wilmowsky, A. Rottmair, C. Korner, R.F. Singer, S. Holst, K.A. Schlegel, F.W. Neukam, E. Nkenke, Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts, J. Biomed. Mater. Res. A. 84 (2008) 1111–1119.

DOI: 10.1002/jbm.a.31540

Google Scholar

[4] J. Uggeri, S. Guizzardi, R. Scandroglio, R. Gatti, Adhesion of human osteoblasts to titanium: a morpho-functional analysis with confocal microscopy, Micron. 41 (2010) 210–219.

DOI: 10.1016/j.micron.2009.10.013

Google Scholar

[5] F. Luthen, R. Lange, P. Becker, J. Rychly, U. Beck, J.G. Nebe, The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells, Biomaterials. 26 (2005) 2423–2440.

DOI: 10.1016/j.biomaterials.2004.07.054

Google Scholar

[6] P.D. Prowse, C.G. Elliott, J. Hutter, D.W. Hamilton, Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies, PLoS One. 8 (2013) e58898.

DOI: 10.1371/journal.pone.0058898

Google Scholar

[7] A.B. Faia-Torres, S. Guimond-Lischer, M. Rottmar, M. Charnley, T. Goren, K. Maniura-Weber, N.D. Spencer, R.L. Reis, M. Textor, N.M. Neves, Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients, Biomaterials. 35 (2014) 9023–9032.

DOI: 10.1016/j.biomaterials.2014.07.015

Google Scholar

[8] I.A. Khlusov, Y. Dekhtyar, Y.P. Sharkeev, V.F. Pichugin, M.Y. Khlusova, N. Polyaka, F. Tjulkins, V. Vendinya, E.V. Legostaeva, L.S. Litvinova, V.V. Shupletsova, O.G. Khaziakhmatova, K.A. Yurova, K.A. Prosolov. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells, Materials. 11 (2018) 978.

DOI: 10.3390/ma11060978

Google Scholar

[9] C.H. Thomas, J.H. Collier, C.S. Sfeir, K.E. Healy, Engineering gene expression and protein synthesis by modulation of nuclear shape, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 1972–(1977).

DOI: 10.1073/pnas.032668799

Google Scholar

[10] Y. Shafrir, G. Forgacs, Mechanotransduction through the cytoskeleton, Am. J. Physiol. Cell Physiol. 282 (2002) 479–486.

Google Scholar

[11] P.S. Mathieu, E.G. Loboa, Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways, Send to Tissue Eng Part B Rev. 18 (2012) 436–444.

DOI: 10.1089/ten.teb.2012.0014

Google Scholar

[12] P. Bourin, B.A. Bunnell, L. Casteilla, M. Dominici, A.J. Katz, K.L. March, H. Redl, J.P. Rubin, K. Yoshimura, J.M. Gimble, Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT), Cytotherapy. 15 (2013) 641–648.

DOI: 10.1016/j.jcyt.2013.02.006

Google Scholar

[13] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, Dj. Prockop, E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy. 8 (2006) 315–317.

DOI: 10.1080/14653240600855905

Google Scholar

[14] P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, M.H. Hedrick, Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng. 7 (2001) 211– 228.

DOI: 10.1089/107632701300062859

Google Scholar

[15] B.L. Riggs, L.J. Melton III, Osteoporosis: Etiology, diagnosis, and management, second ed., Lippincott-Raven Publ., Philadelphia, New York, (1995).

Google Scholar

[16] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: an introduction to Materials in Medicine, second ed., Elsevier Academic Press, San Diego, (2004).

Google Scholar

[17] S.V. Gnedenkov, Y.P. Scharkeev, S.L. Sinebryukhov, O.A. Khrisanfova, E.V. Legostaeva, A.G. Zavidnaya, A.V. Puz, I.A. Khlusov, Formation and Properties of Bioactive Surface Layers on Titanium, Inorganic Materials: Applied Research. 2 (2011) 474–481.

DOI: 10.1134/s2075113311050133

Google Scholar