[1]
A.L. Ivanovsky, Quantum chemistry in materials science, Ekaterinburg, Russia, (1999).
Google Scholar
[2]
M.S. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, (1996).
Google Scholar
[3]
R. Saito, M.S. Dresselhaus, G. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, (1999).
Google Scholar
[4]
P.J.F. Harris, Carbon Nanotubes and Related Structures: New Materials of the XXI Century, Moscow, Russia, (2003).
Google Scholar
[5]
I.V. Zaporotskova, Carbon and Non-Carbon Nanomaterials and Composite Structures Based on Them: Structure and Electronic Properties, Volgograd, Russia, (2009).
Google Scholar
[6]
K.F. Akhmadichina, I.I. Bobrinetskii, I.A. Komarov, A.M. Malovichko, V.K. Nevolin, A.V. Petukhov, A.V. Golovin, A.O. Zalevskii, The flexible biological sensors based on carbon nanotubular films, Nanotechnologies in Russia, Road Town, 2013, pp.721-726.
DOI: 10.1134/s1995078013060025
Google Scholar
[7]
W.D. Zhang, W.H. Zhang, Carbon Nanotubes as Active Components for Gas Sensors, J. Sens. 160698 (2009) 16.
Google Scholar
[8]
С. Farrera, A.F. Torres, N. Feliu, Carbon Nanotubes as Optical Sensors in Biomedicine, J. ACS Nano. 11 (2017) 10637-10643.
DOI: 10.1021/acsnano.7b06701
Google Scholar
[9]
J. Casanova-Cháfer, E. Navarrete, X. Noirfalise, P. Umek, C. Bittencourt, E. Llobet, Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes, J. Sens. 19 (2019) 113.
DOI: 10.3390/s19010113
Google Scholar
[10]
W. Da Silva, M.E. Ghica, C.M.A. Brett, Gold nanoparticle decorated multiwalled carbon nanotube modified electrodes for the electrochemical determination of theophylline, J. Anal. Meth. 10 (2018) 5634–5642.
DOI: 10.1039/c8ay02150c
Google Scholar
[11]
M.A. Salvador, C.P. Sousa, C.D. Maciel, R.N. Gomes, S. Morais, P. de Lima-Neto, M.D. Coutinho-Neto, A.N. Correia, Experimental and computational studies of the interactions between carbon nanotubes and ionic liquids used for detection of acetaminophen. J. Sens. Actuators B Chem. 277 (2018) 640-646.
DOI: 10.1016/j.snb.2018.09.017
Google Scholar
[12]
S. Alim, J. Vejayan, M.M. Yusoff, A.K.M. Kafi, Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing, J. Biosens. Bioelectron. 121 (2018) 125–136.
DOI: 10.1016/j.bios.2018.08.051
Google Scholar
[13]
M.S. Dresselhaus, Сarbon nanotubes: synthesis, structure, properties, and application, Springer-Verlag, (2000).
Google Scholar
[14]
P.N. D'yachkov, Electron Properties and Applications of Nanotubes, Moscow, Russia, (2010).
Google Scholar
[15]
A. Rubio, Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes, J. Phys. Rev. B. 69 (2004) 245403.
Google Scholar
[16]
J. Debnarayan, Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes, J. Progr. Mat. Science. 58 (2013) 565.
Google Scholar
[17]
N.P. Boroznina, I.V. Zaporotskova, S.V. Boroznin, L.V. Kozhitov, A.V. Popkova, On the Practicability of Sensors Based on Surface Carboxylated Boron–Carbon Nanotubes, J. Russ. Journ. Inorg. Chem. 64 (2019) 74-78.
DOI: 10.1134/s0036023619010029
Google Scholar
[18]
M.A. Mokeev, L.A. Urkhanova, A.N. Khagleev, D.B. Solovev, The Impact Evaluation of Factors on the Adhesion of Modified Polytetrafluoroethylene Films in a Glow Discharge Non-Thermal Plasma, Materials Science Forum, Vol. 992 (2020) 658-662. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.992.658.
DOI: 10.4028/www.scientific.net/msf.992.658
Google Scholar