[1]
F. Davoodian, E. Salahinejad, E. Sharifi, Z. Barabadi, L. Tayebi, PLGA-coated drug-loaded nanotubes anodically grown on nitinol, Mater. Sci. and Eng. C 116 (2020) 111174.
DOI: 10.1016/j.msec.2020.111174
Google Scholar
[2]
H. Cao, M.H. Wu, F. Zhou, R.M. McMeeking, R.O. Ritchie, The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices, J. Mech. and Phys. of Solids. 143 (2020) 104057.
DOI: 10.1016/j.jmps.2020.104057
Google Scholar
[3]
F. Bartolomeu, M.M. Costa, N. Alves, G. Miranda, F.S. Silva, Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting, J. of the Mech. Behavior of Biomedical Mater. 110 (2020) 103891.
DOI: 10.1016/j.jmbbm.2020.103891
Google Scholar
[4]
A. Coda, A. Gallitognotta, L. Fumagalli, M. Bertoldi, Microstructure and dynamo-mechanical behavior of NiTi sintered-porous sheets from pre-alloyed powders, Metallurgia Italiana. 103(4) (2011) 3-9.
Google Scholar
[5]
M.A. Sevostyanov, A.G. Kolmakov, K.V. Sergiyenko, M.A. Kaplan, A.S. Baikin, S.V. Gudkov, Mechanical, physical–chemical and biological properties of the new Ti–30Nb–13Ta–5Zr alloy, J. Mater. Sci. 55(29) (2020) 14516-14529.
DOI: 10.1007/s10853-020-05020-8
Google Scholar
[6]
P. Bayati, A. Jahadakbar, M. Barati, M. Nematollahi, L. Saint-Sulpice, M. Haghshenas, S.A. Chirani, M.J. Mahtabi, M. Elahinia, Toward low and high cycle fatigue behavior of SLM-fabricated NiTi: Considering the effect of build orientation and employing a self-heating approach, Int. J. Mech. Sci. 185 (2020).
DOI: 10.1016/j.ijmecsci.2020.105878
Google Scholar
[7]
T. Hryniewicz, K. Rokosz, R. Rokicki, Surface investigation of NiTi rotary endodontic instruments after magnetoelectropolishing, Materials Research Society Symposium Proceedings. 1244 (2009).
DOI: 10.1557/proc-1244-3
Google Scholar
[8]
J. Uchil, K.K. Ganesh, K.K. Mahesh, Simple thermal actuator using R-phase transformation of nitinol, Proceedings of SPIE-the International Society for Optical Engineering. 4701 (2002) 435-442.
DOI: 10.1117/12.474680
Google Scholar
[9]
R. Amini, F. Alijani, M. Ghaffari, M. Alizadeh, A.K. Okyay Formation of B19', B2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics, Powder Technology. 253 (2014) 797-802.
DOI: 10.1016/j.powtec.2013.12.029
Google Scholar
[10]
S. Chatterjee, A. Kumar Pandey, S. Sankar Mahapatra, K. Singh Arora, A. Behera, Microstructural variation at interface during fiber laser joining of NiTi/Ti6Al4V and effect of mechanical strength. J. Mater. Processing Technology 282 (2020) 116661.
DOI: 10.1016/j.jmatprotec.2020.116661
Google Scholar
[11]
B. Lin, K. Gall, H.J. Maier, R. Waldron, Structure and thermomechanical behavior of NiTiPt shape memory alloy wires, Acta Biomaterialia. 5(1) (2009) 257-267.
DOI: 10.1016/j.actbio.2008.07.015
Google Scholar
[12]
S. Chatterjee, S.S. Mahapatra, K.S. Arora, A. Behera, Physical and mechanical characterization of dissimilar laser welded joints of AISI 316/Cu/SMA using fiber laser technology, J. Laser Applications. 32(3) (2020) 032018.
DOI: 10.2351/7.0000003
Google Scholar
[13]
V. Srivastava, M. Gupta, Impact of post hardening mechanism on self-healing assessment of AA2014 nitinol-based smart composites, Metals and Materials International, (2020).
DOI: 10.1007/s12540-020-00630-y
Google Scholar
[14]
V.K. Dragunov, A.L. Goncharov, A.P. Sliva, Y.V. Terentyev, A.V. Gudenko, Russian Federation Patent No. 2725537 (2020).
Google Scholar
[15]
D.A. Gaponova, R.V. Rodyakina, A.V. Gudenko, A.P. Sliva, A.V. Shcherbakov, Effect of reheating zones in additive manufacturing by means of electron beam metal wire deposition method, CIRP J. Manufacturing Sci. and Technology. 28 (2020) 68-75.
DOI: 10.1016/j.cirpj.2020.01.001
Google Scholar
[16]
V.K. Dragunov, M.V. Goryachkina, A.V. Gudenko, A.P. Sliva, A.V. Shcherbakov, Investigation of the optimal modes of electron-beam wire deposition, IOP Conference Series: Materials Science and Engineering. 681 (2019) 012008.
DOI: 10.1088/1757-899x/681/1/012008
Google Scholar
[17]
B.M. Budak, A.B. Uspenskiy, Difference method with front straightening for solving Stefan problems, J. Computational Mathematics and Mathematical Physics. 9 (1969) 1299-1315.
DOI: 10.1016/0041-5553(69)90127-x
Google Scholar
[18]
A.A. Samarskiy, B.D. Moiseenko, Economical pass-through scheme for multidimensional Stefan problem, J. Computational Mathematics and Mathematical Physics. 9 (1969) 816-827.
Google Scholar