Investigation of the Thermal State of Parts to Justify the Possibility of Additive Forming of Nitinol Blanks In Situ

Article Preview

Abstract:

In this paper, the substantiation of the possibility of additive forming of nitinol billets by simultaneous surfacing of two titanium and nickel wires with an electron beam in vacuum is given. The method of mathematical modeling shows the possibility of forming several molten pools of liquid metal on the bead being deposited immediately behind the main pool for remelting the formed material. The modes of the electron beam for the formation of the main and two additional remelting pools due to the deflection of the beam are determined taking into account the technological capabilities of the installation. The residence time of the metal in the liquid state is calculated for various additive forming modes. Remelting makes it possible to increase the residence time in the liquid state by a multiple of the molten pools number. This significantly improves the conditions for mixing the raw materials and reduces the heterogeneity of the material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-53

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Davoodian, E. Salahinejad, E. Sharifi, Z. Barabadi, L. Tayebi, PLGA-coated drug-loaded nanotubes anodically grown on nitinol, Mater. Sci. and Eng. C 116 (2020) 111174.

DOI: 10.1016/j.msec.2020.111174

Google Scholar

[2] H. Cao, M.H. Wu, F. Zhou, R.M. McMeeking, R.O. Ritchie, The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices, J. Mech. and Phys. of Solids. 143 (2020) 104057.

DOI: 10.1016/j.jmps.2020.104057

Google Scholar

[3] F. Bartolomeu, M.M. Costa, N. Alves, G. Miranda, F.S. Silva, Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting, J. of the Mech. Behavior of Biomedical Mater. 110 (2020) 103891.

DOI: 10.1016/j.jmbbm.2020.103891

Google Scholar

[4] A. Coda, A. Gallitognotta, L. Fumagalli, M. Bertoldi, Microstructure and dynamo-mechanical behavior of NiTi sintered-porous sheets from pre-alloyed powders, Metallurgia Italiana. 103(4) (2011) 3-9.

Google Scholar

[5] M.A. Sevostyanov, A.G. Kolmakov, K.V. Sergiyenko, M.A. Kaplan, A.S. Baikin, S.V. Gudkov, Mechanical, physical–chemical and biological properties of the new Ti–30Nb–13Ta–5Zr alloy, J. Mater. Sci. 55(29) (2020) 14516-14529.

DOI: 10.1007/s10853-020-05020-8

Google Scholar

[6] P. Bayati, A. Jahadakbar, M. Barati, M. Nematollahi, L. Saint-Sulpice, M. Haghshenas, S.A. Chirani, M.J. Mahtabi, M. Elahinia, Toward low and high cycle fatigue behavior of SLM-fabricated NiTi: Considering the effect of build orientation and employing a self-heating approach, Int. J. Mech. Sci. 185 (2020).

DOI: 10.1016/j.ijmecsci.2020.105878

Google Scholar

[7] T. Hryniewicz, K. Rokosz, R. Rokicki, Surface investigation of NiTi rotary endodontic instruments after magnetoelectropolishing, Materials Research Society Symposium Proceedings. 1244 (2009).

DOI: 10.1557/proc-1244-3

Google Scholar

[8] J. Uchil, K.K. Ganesh, K.K. Mahesh, Simple thermal actuator using R-phase transformation of nitinol, Proceedings of SPIE-the International Society for Optical Engineering. 4701 (2002) 435-442.

DOI: 10.1117/12.474680

Google Scholar

[9] R. Amini, F. Alijani, M. Ghaffari, M. Alizadeh, A.K. Okyay Formation of B19', B2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics, Powder Technology. 253 (2014) 797-802.

DOI: 10.1016/j.powtec.2013.12.029

Google Scholar

[10] S. Chatterjee, A. Kumar Pandey, S. Sankar Mahapatra, K. Singh Arora, A. Behera, Microstructural variation at interface during fiber laser joining of NiTi/Ti6Al4V and effect of mechanical strength. J. Mater. Processing Technology 282 (2020) 116661.

DOI: 10.1016/j.jmatprotec.2020.116661

Google Scholar

[11] B. Lin, K. Gall, H.J. Maier, R. Waldron, Structure and thermomechanical behavior of NiTiPt shape memory alloy wires, Acta Biomaterialia. 5(1) (2009) 257-267.

DOI: 10.1016/j.actbio.2008.07.015

Google Scholar

[12] S. Chatterjee, S.S. Mahapatra, K.S. Arora, A. Behera, Physical and mechanical characterization of dissimilar laser welded joints of AISI 316/Cu/SMA using fiber laser technology, J. Laser Applications. 32(3) (2020) 032018.

DOI: 10.2351/7.0000003

Google Scholar

[13] V. Srivastava, M. Gupta, Impact of post hardening mechanism on self-healing assessment of AA2014 nitinol-based smart composites, Metals and Materials International, (2020).

DOI: 10.1007/s12540-020-00630-y

Google Scholar

[14] V.K. Dragunov, A.L. Goncharov, A.P. Sliva, Y.V. Terentyev, A.V. Gudenko, Russian Federation Patent No. 2725537 (2020).

Google Scholar

[15] D.A. Gaponova, R.V. Rodyakina, A.V. Gudenko, A.P. Sliva, A.V. Shcherbakov, Effect of reheating zones in additive manufacturing by means of electron beam metal wire deposition method, CIRP J. Manufacturing Sci. and Technology. 28 (2020) 68-75.

DOI: 10.1016/j.cirpj.2020.01.001

Google Scholar

[16] V.K. Dragunov, M.V. Goryachkina, A.V. Gudenko, A.P. Sliva, A.V. Shcherbakov, Investigation of the optimal modes of electron-beam wire deposition, IOP Conference Series: Materials Science and Engineering. 681 (2019) 012008.

DOI: 10.1088/1757-899x/681/1/012008

Google Scholar

[17] B.M. Budak, A.B. Uspenskiy, Difference method with front straightening for solving Stefan problems, J. Computational Mathematics and Mathematical Physics. 9 (1969) 1299-1315.

DOI: 10.1016/0041-5553(69)90127-x

Google Scholar

[18] A.A. Samarskiy, B.D. Moiseenko, Economical pass-through scheme for multidimensional Stefan problem, J. Computational Mathematics and Mathematical Physics. 9 (1969) 816-827.

Google Scholar