Thermotropic Copolyesters Based on Polyethylene Terephthalate and 4-Hydroxybenzoic Acid for High Modulus Fibers

Article Preview

Abstract:

The copolyesters derived from dimethyl ester of terephthalic acid, ethylene glycol, and 4-hydroxybenzoic acid (HBA) have been synthesized via catalytically promoted polycondensation omitting the acetylation step. FTIR spectroscopy results have evidenced an insertion of HBA along a polymer backbone. Of note, thermal gravimetric analysis has shown that the HBA moieties substantially improved the thermal stability of polyesters. As found by differential scanning calorimetry and polarizing microscopy, the copolyesters are capable of forming an anisotropic phase in a temperature range of 150-170 °C. Additionally, the free surface energy of the samples was determined to evaluate the compatibility of thermotropic copolyesters with other high-molecular compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.F. Kuchfuss, Jr.W.F. Jackson, Liquid crystal polymers. I. Preparation and properties ofp-hydroxybenzoic acid copolyesters, J. Polym. Sci., Polym. Chem. 14 (1976) 2043-2058.

DOI: 10.1002/pol.1976.170140820

Google Scholar

[2] V.P. Fitzjarrald, R. Pongdee, A convenient procedure for the esterification of benzoic acids with phenols: a new application for the Mitsunobu reaction, Tetrahedron Lett. 48 (2007) 3553-3557.

DOI: 10.1016/j.tetlet.2007.03.095

Google Scholar

[3] H.-Q. He, Y.-W. Chang, W.-M. Xu, Study on the Aromatic Transesterification Reaction Catalyzed by Phosphotungstic Acid, Lett. Org. Chem. 12 (2015) 280-282.

DOI: 10.2174/1570178612666150115235650

Google Scholar

[4] J.S. Ruso, N. Rajendiran, R.S. Kumaran, Metal-free synthesis of aryl esters by coupling aryl carboxylic acids and aryl boronic acids, Tetrahedron Lett. 55 (2014) 2345-2347.

DOI: 10.1016/j.tetlet.2014.02.079

Google Scholar

[5] S.S. Mahajan, B.B. Idage, N.N. Chavan, S. Sivaram, Aromatic polyesters via transesterification of dimethylterephthalate/isophthalate with bisphenol-A, J. Appl. Polym. Sci. 61 (1996) 2297-2304.

DOI: 10.1002/(sici)1097-4628(19960926)61:13<2297::aid-app8>3.0.co;2-7

Google Scholar

[6] C. Berti, V. Bonora, F. Pilati, M. Fiorini, Synthesis of aromatic polyesters based on bisphenol A and phthalic acids. A new preparative process, Macromolecules 24 (1991) 5269-5272.

DOI: 10.1021/ma00019a007

Google Scholar

[7] T.-S. Chung, S.-X. Cheng, Effect of catalysts on thin-film polymerization of thermotropic liquid crystalline copolyester, J. Polym. Sci. Pol. Chem. 38 (2000) 1257-1269.

DOI: 10.1002/(sici)1099-0518(20000415)38:8<1257::aid-pola9>3.0.co;2-9

Google Scholar

[8] A.I. Akhmetshina, E.K. Ignat'eva, T.R. Deberdeev, L.K. Karimova, Yu.N. Yuminova, A.A. Berlin, R.Ya. Deberdeev, Thermotropic Liquid Crystalline Polyesters with Mesogenic Fragments Based on the p-Oxybenzoate Unit, Polym. Sci. Ser. D 12 (2019) 427–434.

DOI: 10.1134/s1995421219040026

Google Scholar

[9] J.Y. Kim, Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites, Materials 2 (2009) 1955-1974.

DOI: 10.3390/ma2041955

Google Scholar

[10] S. Saikrasun, O. Wongkalasin, Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/poly(ethylene terephthalate) copolyester, Polymer Degradation and Stability 88 (2005) 300-308.

DOI: 10.1016/j.polymdegradstab.2004.11.004

Google Scholar

[11] J.Y. Kim, S.H. Kim, In Situ fibril formation of thermotropic liquid crystal polymer in polyesters blends, J. Polym. Sci. Pol. Phys. 43 (2005) 3600-3610.

DOI: 10.1002/polb.20626

Google Scholar

[12] E. Fekete, E. Földes, B. Pukánszky, Effect of molecular interactions on the miscibility and structure of polymer blends, Eur. Polym. J. 41 (2005) 727-736.

DOI: 10.1016/j.eurpolymj.2004.10.038

Google Scholar