[1]
N.H. Williams, Curing epoxy resin impregnated pipe at 2450MHz, J. Microwave Power, 2 (4) (1967) 123-127.
Google Scholar
[2]
T. Bayerl, A. Benedito, A. Gallego, B. Galindo, and P. Mitschang, Melting of Polymer-Polymer Composites by Particulate Heating Promoters and Electromagnetic Radiation; Synthetic Polymer-Polymer Composites, Carl Hanser Verlag GmbH & Co. KG, munich (2011).
DOI: 10.3139/9781569905258.002
Google Scholar
[3]
J. Jacob, L.H.L. Chia, F.Y.C. Boey, Microwave polymerization of poly(methyl acrylate): conversion studies at variable power, J. Appl. Polym. Sci. 63 (1997) 787–797.
DOI: 10.1002/(sici)1097-4628(19970207)63:6<787::aid-app11>3.0.co;2-s
Google Scholar
[4]
F.Y.C. Boey, B.H. Yap, L.H.L. Chia, Microwave curing of epoxy-amine system: effect of curing agent on the rate enhancement, Polym. Test. 18 (1999) 93–109.
DOI: 10.1016/s0142-9418(98)00014-2
Google Scholar
[5]
H.S. Ku, F. Siu, E. Siores, J.A.R. Ball, Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites, J. Mater. Process. Technol. 139 (2003) 291–295.
DOI: 10.1016/s0924-0136(03)00238-3
Google Scholar
[6]
D.V.D.V. James, A.G. Erdman, Hot pin welding of thin poly(vinyl chloride) sheet, J. Vinyl Addit. Technol. 47 (2007) 110–115.
DOI: 10.1002/vnl.20111
Google Scholar
[7]
G.S. Baronin, V.M. Dmitriev, D.O. Zavrazhin et.al., Rus. Patent 2350464 C1 (2009).
Google Scholar
[8]
S.V. Mishchenko, D.O. Zavrazhin, C.V. Zavrazhina, E.N. Tugolukov, Numerical simulation of the temperature field and microwave absorption by carbon nanotubes and polymer composites, AIP Conference Proceedings, 1915 (2017) 040040.
DOI: 10.1063/1.5017388
Google Scholar
[9]
J. Aguilar, M. Gonzalez and I. Gomez., Microwaves as an Energy Source for Producing Magnesia-Alumina Spinel, J. Microwave Power Electromag. Energ., 32[2] (1997) 347-356.
DOI: 10.1080/08327823.1997.11688326
Google Scholar
[10]
J. Aguilar and I. Gomez, Microwave processing of calcium zirconate from CaO and ZrO2, Advances in Technology and Materials Processing Journal, 5[2] (2003) 92-97.
Google Scholar
[11]
J. Aguilar, J. Rodriguez and M. Hinojosa, Production of β-SiC with microwaves as an energy source, J. Microwave Power Electromag. Energ. IMPI, 36[3] (2001) 169-177.
DOI: 10.1080/08327823.2001.11688458
Google Scholar
[12]
J.A. Aguilar-Garib, F. Garcia, and Z. Valdez, Estimating resistive and dielectric effects during microwave eating of Fe0.22Ni0.67Mn2.11O4, J. Ceram. Soc. Japan, 117 (2009) 801-807.
DOI: 10.2109/jcersj2.117.801
Google Scholar
[13]
J. Harper, D. Price, and J. Zhang, Use of fillers to enable the microwave processing of polypropylene, J. Microwave Power Electromagn. Energy, 40 (2007) 219-227.
DOI: 10.1080/08327823.2005.11688543
Google Scholar
[14]
Q. Ling, J. Sun, Q. Zhao, and Q. Zhou, Microwave absorbing properties of linear low density polyethylene/ethylene–octene copolymer composites filled with short carbon fiber, Mater. Sci. Eng. B, 162 (2009) 162-166.
DOI: 10.1016/j.mseb.2009.03.023
Google Scholar
[15]
C. Mack, S. Sathyanarayana, P. Weiss, I. Mikonsaari, C. Hubner, F. Henning, and P. Elsner, Twin-screw extrusion of multi walled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties, IOP Conf. Ser. Mater. Sci. Eng., 40 (2012) 012020.
DOI: 10.1088/1757-899x/40/1/012020
Google Scholar
[16]
F.Y. Castillo, R. Socher, B. Krause, R. Headrick, B.P. Grady, R. Prada-Silvy, and P. Pötschke, Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes, Polymer, 52 (2011) 3835-3845.
DOI: 10.1016/j.polymer.2011.06.018
Google Scholar
[17]
J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun'ko, and W.J. Blau, High Performance Nanotube‐Reinforced Plastics: Understanding the Mechanism of Strength Increase, Adv. Funct. Mater., 14 (2004) 791.
DOI: 10.1002/adfm.200305200
Google Scholar
[18]
B. Krause, P. Pötschke, and L. Häußler, Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites Compos. Sci. Technol., 69 (2009) 1505-1515.
DOI: 10.1016/j.compscitech.2008.07.007
Google Scholar
[19]
R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu et al., Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning, Nano Letters 4 (3) (2004) 459-464.
DOI: 10.1021/nl035135s
Google Scholar
[20]
C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, J. Guo, Microwave attenuation of multiwalled carbon nanotube-fused silica composites, Appl. Phys. Letters 87 (2005) 123103.
DOI: 10.1063/1.2051806
Google Scholar
[21]
B. Galindo, A. Benedito, F. Ramos, E. Gimenez, Microwave Heating of Polymers: Influence of Carbon Nanotubes Dispersion on the Microwave Susceptor Effectiveness, Polymer Eng. and Science 56 (12) 1321-1329.
DOI: 10.1002/pen.24365
Google Scholar
[22]
D. Zavrazhin, Ch. Zavrazhina, Microwave modification of polymer-carbon materials, Materials Science Forum, Volume 945 (2018) 443-447.
DOI: 10.4028/www.scientific.net/msf.945.443
Google Scholar
[23]
A.G. Tkachev, Investigation of methods for improving the activity of catalysts for producing nanostructured carbon materials, Theor. Found. Chem. Eng. 43 (2009) 739.
DOI: 10.1134/s0040579509050212
Google Scholar
[24]
E.A. Burakova, T.P. Dyachkova, A.V. Rukhov, E.N. Tugolukov, E.V. Galunin, A.G. Tkachev, Al Arsh Basheer, Imran Ali, Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. Journal of Molecular Liquids, Vol. 253 (2018) 340-346.
DOI: 10.1016/j.molliq.2018.01.062
Google Scholar