Influence of Microwave on the Structure and Properties of Nanomodified Fluoroplastic

Article Preview

Abstract:

Polymers modified with carbon nanomaterials exhibit enhanced electrical conductivity. The modifier, which is qualitatively distributed in the polymer matrix, actively absorbs microwave waves even with an extremely small introduced volume (up to 1.5 mass parts). Photographs obtained by scanning electron microscopy indicate a uniform distribution of carbon nanotubes in the matrix of fluoroplastic 4. The microwave treatment of the obtained composites showed a significant increase in the temperature of the samples with a heating time of up to 100 sec. even with minimal amounts of modifier added. Strength characteristics for a uniaxial plant of modified materials after microwave increase by 40-50%. The obtained modified materials based on a non-polar polymer matrix have enhanced characteristics of absorption of microwave radiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-16

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.H. Williams, Curing epoxy resin impregnated pipe at 2450MHz, J. Microwave Power, 2 (4) (1967) 123-127.

Google Scholar

[2] T. Bayerl, A. Benedito, A. Gallego, B. Galindo, and P. Mitschang, Melting of Polymer-Polymer Composites by Particulate Heating Promoters and Electromagnetic Radiation; Synthetic Polymer-Polymer Composites, Carl Hanser Verlag GmbH & Co. KG, munich (2011).

DOI: 10.3139/9781569905258.002

Google Scholar

[3] J. Jacob, L.H.L. Chia, F.Y.C. Boey, Microwave polymerization of poly(methyl acrylate): conversion studies at variable power, J. Appl. Polym. Sci. 63 (1997) 787–797.

DOI: 10.1002/(sici)1097-4628(19970207)63:6<787::aid-app11>3.0.co;2-s

Google Scholar

[4] F.Y.C. Boey, B.H. Yap, L.H.L. Chia, Microwave curing of epoxy-amine system: effect of curing agent on the rate enhancement, Polym. Test. 18 (1999) 93–109.

DOI: 10.1016/s0142-9418(98)00014-2

Google Scholar

[5] H.S. Ku, F. Siu, E. Siores, J.A.R. Ball, Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites, J. Mater. Process. Technol. 139 (2003) 291–295.

DOI: 10.1016/s0924-0136(03)00238-3

Google Scholar

[6] D.V.D.V. James, A.G. Erdman, Hot pin welding of thin poly(vinyl chloride) sheet, J. Vinyl Addit. Technol. 47 (2007) 110–115.

DOI: 10.1002/vnl.20111

Google Scholar

[7] G.S. Baronin, V.M. Dmitriev, D.O. Zavrazhin et.al., Rus. Patent 2350464 C1 (2009).

Google Scholar

[8] S.V. Mishchenko, D.O. Zavrazhin, C.V. Zavrazhina, E.N. Tugolukov, Numerical simulation of the temperature field and microwave absorption by carbon nanotubes and polymer composites, AIP Conference Proceedings, 1915 (2017) 040040.

DOI: 10.1063/1.5017388

Google Scholar

[9] J. Aguilar, M. Gonzalez and I. Gomez., Microwaves as an Energy Source for Producing Magnesia-Alumina Spinel, J. Microwave Power Electromag. Energ., 32[2] (1997) 347-356.

DOI: 10.1080/08327823.1997.11688326

Google Scholar

[10] J. Aguilar and I. Gomez, Microwave processing of calcium zirconate from CaO and ZrO2, Advances in Technology and Materials Processing Journal, 5[2] (2003) 92-97.

Google Scholar

[11] J. Aguilar, J. Rodriguez and M. Hinojosa, Production of β-SiC with microwaves as an energy source, J. Microwave Power Electromag. Energ. IMPI, 36[3] (2001) 169-177.

DOI: 10.1080/08327823.2001.11688458

Google Scholar

[12] J.A. Aguilar-Garib, F. Garcia, and Z. Valdez, Estimating resistive and dielectric effects during microwave eating of Fe0.22Ni0.67Mn2.11O4, J. Ceram. Soc. Japan, 117 (2009) 801-807.

DOI: 10.2109/jcersj2.117.801

Google Scholar

[13] J. Harper, D. Price, and J. Zhang, Use of fillers to enable the microwave processing of polypropylene, J. Microwave Power Electromagn. Energy, 40 (2007) 219-227.

DOI: 10.1080/08327823.2005.11688543

Google Scholar

[14] Q. Ling, J. Sun, Q. Zhao, and Q. Zhou, Microwave absorbing properties of linear low density polyethylene/ethylene–octene copolymer composites filled with short carbon fiber, Mater. Sci. Eng. B, 162 (2009) 162-166.

DOI: 10.1016/j.mseb.2009.03.023

Google Scholar

[15] C. Mack, S. Sathyanarayana, P. Weiss, I. Mikonsaari, C. Hubner, F. Henning, and P. Elsner, Twin-screw extrusion of multi walled carbon nanotubes reinforced polycarbonate composites: Investigation of electrical and mechanical properties, IOP Conf. Ser. Mater. Sci. Eng., 40 (2012) 012020.

DOI: 10.1088/1757-899x/40/1/012020

Google Scholar

[16] F.Y. Castillo, R. Socher, B. Krause, R. Headrick, B.P. Grady, R. Prada-Silvy, and P. Pötschke, Electrical, mechanical, and glass transition behavior of polycarbonate-based nanocomposites with different multi-walled carbon nanotubes, Polymer, 52 (2011) 3835-3845.

DOI: 10.1016/j.polymer.2011.06.018

Google Scholar

[17] J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun'ko, and W.J. Blau, High Performance Nanotube‐Reinforced Plastics: Understanding the Mechanism of Strength Increase, Adv. Funct. Mater., 14 (2004) 791.

DOI: 10.1002/adfm.200305200

Google Scholar

[18] B. Krause, P. Pötschke, and L. Häußler, Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites Compos. Sci. Technol., 69 (2009) 1505-1515.

DOI: 10.1016/j.compscitech.2008.07.007

Google Scholar

[19] R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu et al., Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning, Nano Letters 4 (3) (2004) 459-464.

DOI: 10.1021/nl035135s

Google Scholar

[20] C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, J. Guo, Microwave attenuation of multiwalled carbon nanotube-fused silica composites, Appl. Phys. Letters 87 (2005) 123103.

DOI: 10.1063/1.2051806

Google Scholar

[21] B. Galindo, A. Benedito, F. Ramos, E. Gimenez, Microwave Heating of Polymers: Influence of Carbon Nanotubes Dispersion on the Microwave Susceptor Effectiveness, Polymer Eng. and Science 56 (12) 1321-1329.

DOI: 10.1002/pen.24365

Google Scholar

[22] D. Zavrazhin, Ch. Zavrazhina, Microwave modification of polymer-carbon materials, Materials Science Forum, Volume 945 (2018) 443-447.

DOI: 10.4028/www.scientific.net/msf.945.443

Google Scholar

[23] A.G. Tkachev, Investigation of methods for improving the activity of catalysts for producing nanostructured carbon materials, Theor. Found. Chem. Eng. 43 (2009) 739.

DOI: 10.1134/s0040579509050212

Google Scholar

[24] E.A. Burakova, T.P. Dyachkova, A.V. Rukhov, E.N. Tugolukov, E.V. Galunin, A.G. Tkachev, Al Arsh Basheer, Imran Ali, Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. Journal of Molecular Liquids, Vol. 253 (2018) 340-346.

DOI: 10.1016/j.molliq.2018.01.062

Google Scholar