[1]
A.V. Eletskii, Nanocarbon materials. Physical and chemical performance properties, synthesis. no. 11, Vol. 174 (2004) 1191-1231.
Google Scholar
[2]
R. Saito, M.S. Dresselhaus, G. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, (1999).
Google Scholar
[3]
P.J.F. Harris, Carbon Nanotubes and Related Structures: New Materials of the XXI Century, Moscow, Russia, (2003).
Google Scholar
[4]
A.V. Eletskii, Sorption properties of carbon nanostructures, J. Uspekhi Fizicheskikh Nauk. 47 (2004) 1191.
DOI: 10.3367/ufnr.0174.200411c.1191
Google Scholar
[5]
I.V. Zaporotskova, Carbon and Non-Carbon Nanomaterials and Composite Structures Based on Them: Structure and Electronic Properties, Volgograd, Russia, (2009).
Google Scholar
[6]
A. Kaur, I. Singh, A. Kumar, P. Koteswara Rao, P. Kumar Bhatnagar Effect of physicochemical properties of analyte on the selectivity of polymethylmethacrylate: a carbon composite sensor based on nanotubes for the detection of volatile organic compounds, J. Materials Science in Semiconductor Processing. 41 (2016) 26-31.
DOI: 10.1016/j.mssp.2015.08.010
Google Scholar
[7]
A. Kaur, I. Singh, J. Kumar, D. Madhwal, P. K. Bhatnagar, P. C. Mathur, C. A. Bernardo, M. C. Paiva An environment friendly highly sensitive ethanol vapor sensor based on polymethylethacrylate: functionalized-multiwalled. carbon nanotubes composite. Advanced Science. Engineering and Medicine. 5(10) (2013) 1062-1066.
DOI: 10.1166/asem.2013.1400
Google Scholar
[8]
H. Yuan, Y. Xiong, G. Luo, M. Li, Q. Shen, L. Zhang Microstructure and electrical conductivity of CNTs/PMMA nanocomposite foams foaming. by supercritical carbon dioxide. Journal of Wuhan University of Technology, Materials Science Edition. 31(2) (2016) 481-486.
DOI: 10.1007/s11595-016-1395-7
Google Scholar
[9]
V.G. Shevchenko, The basis of physics of polymer composite materials, Handbook for students in the specialty Composite nanomaterials,, Moscow, Moscow state University after Lomonosov. (2010) 99.
Google Scholar
[10]
Wing Mai Yu., Yu. Zhong-Zhen, Polymer nanocomposites, Moscow, Technosphere. (2011) 688.
Google Scholar
[11]
George Wypych Handbook of Polymers, Second Edition. ChemTec Publishing. (2016) 712.
Google Scholar
[12]
A.A. Berlin, G.V. Korolev, T.Ya. Kefeli, Yu.M. Siverpga, Acrylic oligomers and materials based on them, M., Chemistry. (1982) 242.
Google Scholar
[13]
Ch. Semaan, A. Soum, Influence of wrapping on some properties of MWCNT-PMMA and MWCNT-PE composites, Polymer Bulletin, Heidelberg, Germany. 70(6) (2013) 1919-1936.
DOI: 10.1007/s00289-012-0888-6
Google Scholar
[14]
J.S. Kim, Sh.J. Cho, K.S. Jeong, Y. Ch. Choi, M.S. Jeong, Improved electrical conductivity of very long multi-walled carbon nanotube bundle/poly(methyl methacrylate) composites, Carbon. 49(6) (2011) 2127-2133.
DOI: 10.1016/j.carbon.2011.01.053
Google Scholar
[15]
W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory, Weinheim, Germany (2002).
Google Scholar
[16]
P.N. D'yachkov, Electron Properties and Applications of Nanotubes, Moscow, Russia (2010).
Google Scholar
[17]
M.S. Ribeiro, A.L. Pascoini, W.G. Knupp, I. Camps, Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: a computational approach. J. Appl. Surf. Sci. 426 (2017) 781–787.
DOI: 10.1016/j.apsusc.2017.07.162
Google Scholar
[18]
L.S. Elbakyan, I.V. Zaporotskova, Obtaining New Dental Materials Reinforced with Carbon Nanotubes, J. of nano- and electronic physics. Vol. 6, № 3 (2014) 03008-1 – 03008-3.
Google Scholar
[19]
M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Application, Berlin/Heidelberg, Germany, (2001).
Google Scholar
[20]
L.S. Elbakyan, I.V. Zaporotskova, On the possibility of creating polymer nanocomposites based on methacrylic acid by reinforcing them with carbon nanotubes, J. Eurasian Union of scientists. Kh. (2014) 39-42.
Google Scholar