Kinetic Characteristics of Electrodeposition of Ni-Co-Al2O3 Composite Coating

Article Preview

Abstract:

The kinetic features of electrodeposition process of a wear-and corrosion-resistant composite electrochemical nickel-cobalt-aluminum oxide coating were investigated. Potentiodynamic studies showed that in the process of the CEC formation at the cathode the electrode polarization decreases, and the value of the limiting current density increases by more than twice. Consequently, the rate of the CEC electrodeposition process increases and the range of operating current densities expand in comparison with the control coating with the Ni-Co alloy. Temperature-kinetic, chronopotentiometric methods, values of the temperature coefficient of the reaction rate and the diffusion coefficients of nickel ions were used to determine the mechanism of CEC electrodeposition. As the result of determining the nature of limiting stage of the electrodeposition process of CEC nickel-cobalt-aluminum oxide, it was found that it is caused by such two coupled processes proceeding at comparable rates, as electrophoretic transfer of electroactive particles to the cathode and overgrowing of dispersed particles adsorbed on the cathode surface with electrodeposited metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-331

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.V. Jelinek, Advances in Metal Finishing, An Assessment of the International Literature 2017-2018, J. Galvanotekhnika i obrabotka poverkhnosti. 27, 3 (2019) 4-14.

Google Scholar

[2] I. D. Kudryavtseva, V.I. Balacai, F.I. Kukos, Elektroosazhdenie metallov iz elektrolitov-kolloidov, VINITI Moscow, Electrochimia (USSR). 33 (1990) 50-84.

Google Scholar

[3] L.A. Degtyar, I.Y. Zhukova, V.I. Mishurov, Experience and Perspectives of Electrodeposition from Electrolytes-Colloids of Nickel Plating, Materials Science Forum. 945 (2019) 682-687.

DOI: 10.4028/www.scientific.net/msf.945.682

Google Scholar

[4] L.A. Degtyar, I.Y. Zhukova, V.I. Mishurov, Precipitation of Composite Wear-Resistant Nickel Ectrodeposits with Nanoparticles, Materials Science Forum. 992 (2020) 652-657.

DOI: 10.4028/www.scientific.net/msf.992.652

Google Scholar

[5] G.V. Gur'yanov, Elektroosazhdenie iznosostojkih kompozicij, Shtiinca, Kishinev, (1985).

Google Scholar

[6] R.S. Sajfullin, Neorganicheskie kompozicionnye materialy, Himiya, Moskva, (1983).

Google Scholar

[7] S. Mahdavi, A. Asghari-Alamdari, M. Zolola-Meibodi, Effect of alumina particle size on characteristics, corrosion, and tribological behavior of Co/Al2O3 composite coatings, J. Ceramics International. 46, 4 (2020) 5351-5359.

DOI: 10.1016/j.ceramint.2019.10.289

Google Scholar

[8] F.C. Walsh, C. Ponce de Leon, A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: An established and diversifying technology, J. Trans. IMF, 92, 2 (2014), 83-98.

DOI: 10.1179/0020296713z.000000000161

Google Scholar

[9] J.P. Celis, J.R. Roos, Kinetics of the Deposition of Alumina Particles from Copper Sulfate Plating Baths, J. of the Electrochemical Society. 124 (1977) 1508-1511.

DOI: 10.1149/1.2133102

Google Scholar

[10] J.P. Celis, J.R. Roos, C. Buelens, J. Fransaer, Mechanism of electrolytic composite plating: survey and trends, J. Trans. IMF. 69, 4 (1991) 133.

DOI: 10.1080/00202967.1991.11870909

Google Scholar

[11] Z. Abdel Hamid, Review Article: Composite and Nanocomposite Coatings, J. Metallurgical Engineering, 3, 1 (2014), pp.29-42.

Google Scholar

[12] N. Guglielmi, Kinetics of the Deposition of Inert Particles from Electrolytic Baths, J. of the Electrochemical Society. 119 (1972) 1009-1012.

DOI: 10.1149/1.2404383

Google Scholar

[13] S. Shawki, Z. Abdel Hamid, Deposition of high wear resistance of Ni‐composite coatings, J.Anti-Corrosion Methods and Materials. 44, 3 (1997) 178-185.

DOI: 10.1108/00035599710167142

Google Scholar

[14] Meenu Srivastava, V.K. William Grips, K.S. Rajam, Electrodeposition of Ni-Co composites containing nano-CeO2 and their structure, properties, Appl. Surf. Sci. 257 (2010 717-722.

DOI: 10.1016/j.apsusc.2010.07.046

Google Scholar

[15] Nurcan Acet, Damla Eroglu, Electrodeposition of Ni/TiC Nanocomposites in the Presence of a Cationic Dispersant, J. of the Electrochemical Society. 165 (2018) 31-36.

DOI: 10.1149/2.0451802jes

Google Scholar

[16] J. Fransaer, J.P Celis, J.R Roos, Analysis of the electrolytic codeposition of non‐brownian particles with metals, J. of the Electrochemical Society. 139, 2 (1992) 413.

DOI: 10.1149/1.2069233

Google Scholar

[17] V.N. Tseluikin, A.V. Yakovlev, On the Electrochemical, Deposition and Properties of Nickel-Based Composite Coatings, J. Protection of Metals and Physical Chemistry of Surfaces. 56, 2 (2020) 374–378.

DOI: 10.1134/s2070205120020288

Google Scholar

[18] C.T.J. Low, R.G.A. Wills, F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit, J. Surface and Coatings Technology. 201, 1-2 (2006) 371-383.

DOI: 10.1016/j.surfcoat.2005.11.123

Google Scholar

[19] K. Saha, T.I. Khan, Effect of applied current on the electrodeposited Ni–Al2O3 composite coatings, J. Surface and Coatings Technology. 205, 3 (2010) 890-895.

DOI: 10.1016/j.surfcoat.2010.08.035

Google Scholar

[20] V.D. Jović, U.Č. Lačnjevac, B.M. Jović, Electrodeposition and Characterization of Alloys and Composite Materials, in: S. Djokić (Eds.), Modern Aspects of Electrochemistry, Springer, New York, Heidelberg, Dordrecht, London, 2014, pp.1-84.

DOI: 10.1007/978-1-4939-0289-7_1

Google Scholar

[21] K.I. Popov, S.S. Djokic ́, N.D. Nikolic ́, V.D. Jovic ́, Morphology of Electrochemically and Chemically Deposited Metals, in: K. I. Popov (Eds), Electrodeposited Alloys and Multilayered Structuresp, Springer, Heidelberg, 2016, pp.233-291.

DOI: 10.1007/978-3-319-26073-0_7

Google Scholar

[22] S.L. Kuo, Y.C. Chen, M.D. Ger, W. H. Hwu, Nano-Particles Dispersion Effect on Ni/Al2O3 Composite Coatings,J.Materials Chemistry and Physics. 86, 1 (2004) 5-10.

DOI: 10.1016/j.matchemphys.2003.11.040

Google Scholar

[23] S.A. Lajevardi, T. Shahrabi, J.A. Szpunarc, Tribological Properties of Functionally Graded Ni-Al2O3 Nanocomposite Coating, J. The Electrochemical Society. 164, 6 (2017) 275 – 281.

DOI: 10.1149/2.0731706jes

Google Scholar

[24] K.V. Murzenko, Y.D. Kudryavtsev, V.I. Balakai, Properties of composite nickel-cobalt-aluminum oxide coating deposited from chloride electrolyte, Russian Journal of Applied Chemistry. 86, 8 (2013) 1235–1242.

DOI: 10.1134/s1070427213080144

Google Scholar

[25] H. Khon, O.V. Bashkov, A.A. Bryansky, D.B. Solovev, Failure Analysis of Polymer Blinder Using Acoustic Emission Method, Materials Science Forum, Vol. 992 (2020) 1030-1035. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.992.1030.

DOI: 10.4028/www.scientific.net/msf.992.1030

Google Scholar