[1]
T.V. Jelinek, Advances in Metal Finishing, An Assessment of the International Literature 2017-2018, J. Galvanotekhnika i obrabotka poverkhnosti. 27, 3 (2019) 4-14.
Google Scholar
[2]
I. D. Kudryavtseva, V.I. Balacai, F.I. Kukos, Elektroosazhdenie metallov iz elektrolitov-kolloidov, VINITI Moscow, Electrochimia (USSR). 33 (1990) 50-84.
Google Scholar
[3]
L.A. Degtyar, I.Y. Zhukova, V.I. Mishurov, Experience and Perspectives of Electrodeposition from Electrolytes-Colloids of Nickel Plating, Materials Science Forum. 945 (2019) 682-687.
DOI: 10.4028/www.scientific.net/msf.945.682
Google Scholar
[4]
L.A. Degtyar, I.Y. Zhukova, V.I. Mishurov, Precipitation of Composite Wear-Resistant Nickel Ectrodeposits with Nanoparticles, Materials Science Forum. 992 (2020) 652-657.
DOI: 10.4028/www.scientific.net/msf.992.652
Google Scholar
[5]
G.V. Gur'yanov, Elektroosazhdenie iznosostojkih kompozicij, Shtiinca, Kishinev, (1985).
Google Scholar
[6]
R.S. Sajfullin, Neorganicheskie kompozicionnye materialy, Himiya, Moskva, (1983).
Google Scholar
[7]
S. Mahdavi, A. Asghari-Alamdari, M. Zolola-Meibodi, Effect of alumina particle size on characteristics, corrosion, and tribological behavior of Co/Al2O3 composite coatings, J. Ceramics International. 46, 4 (2020) 5351-5359.
DOI: 10.1016/j.ceramint.2019.10.289
Google Scholar
[8]
F.C. Walsh, C. Ponce de Leon, A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: An established and diversifying technology, J. Trans. IMF, 92, 2 (2014), 83-98.
DOI: 10.1179/0020296713z.000000000161
Google Scholar
[9]
J.P. Celis, J.R. Roos, Kinetics of the Deposition of Alumina Particles from Copper Sulfate Plating Baths, J. of the Electrochemical Society. 124 (1977) 1508-1511.
DOI: 10.1149/1.2133102
Google Scholar
[10]
J.P. Celis, J.R. Roos, C. Buelens, J. Fransaer, Mechanism of electrolytic composite plating: survey and trends, J. Trans. IMF. 69, 4 (1991) 133.
DOI: 10.1080/00202967.1991.11870909
Google Scholar
[11]
Z. Abdel Hamid, Review Article: Composite and Nanocomposite Coatings, J. Metallurgical Engineering, 3, 1 (2014), pp.29-42.
Google Scholar
[12]
N. Guglielmi, Kinetics of the Deposition of Inert Particles from Electrolytic Baths, J. of the Electrochemical Society. 119 (1972) 1009-1012.
DOI: 10.1149/1.2404383
Google Scholar
[13]
S. Shawki, Z. Abdel Hamid, Deposition of high wear resistance of Ni‐composite coatings, J.Anti-Corrosion Methods and Materials. 44, 3 (1997) 178-185.
DOI: 10.1108/00035599710167142
Google Scholar
[14]
Meenu Srivastava, V.K. William Grips, K.S. Rajam, Electrodeposition of Ni-Co composites containing nano-CeO2 and their structure, properties, Appl. Surf. Sci. 257 (2010 717-722.
DOI: 10.1016/j.apsusc.2010.07.046
Google Scholar
[15]
Nurcan Acet, Damla Eroglu, Electrodeposition of Ni/TiC Nanocomposites in the Presence of a Cationic Dispersant, J. of the Electrochemical Society. 165 (2018) 31-36.
DOI: 10.1149/2.0451802jes
Google Scholar
[16]
J. Fransaer, J.P Celis, J.R Roos, Analysis of the electrolytic codeposition of non‐brownian particles with metals, J. of the Electrochemical Society. 139, 2 (1992) 413.
DOI: 10.1149/1.2069233
Google Scholar
[17]
V.N. Tseluikin, A.V. Yakovlev, On the Electrochemical, Deposition and Properties of Nickel-Based Composite Coatings, J. Protection of Metals and Physical Chemistry of Surfaces. 56, 2 (2020) 374–378.
DOI: 10.1134/s2070205120020288
Google Scholar
[18]
C.T.J. Low, R.G.A. Wills, F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit, J. Surface and Coatings Technology. 201, 1-2 (2006) 371-383.
DOI: 10.1016/j.surfcoat.2005.11.123
Google Scholar
[19]
K. Saha, T.I. Khan, Effect of applied current on the electrodeposited Ni–Al2O3 composite coatings, J. Surface and Coatings Technology. 205, 3 (2010) 890-895.
DOI: 10.1016/j.surfcoat.2010.08.035
Google Scholar
[20]
V.D. Jović, U.Č. Lačnjevac, B.M. Jović, Electrodeposition and Characterization of Alloys and Composite Materials, in: S. Djokić (Eds.), Modern Aspects of Electrochemistry, Springer, New York, Heidelberg, Dordrecht, London, 2014, pp.1-84.
DOI: 10.1007/978-1-4939-0289-7_1
Google Scholar
[21]
K.I. Popov, S.S. Djokic ́, N.D. Nikolic ́, V.D. Jovic ́, Morphology of Electrochemically and Chemically Deposited Metals, in: K. I. Popov (Eds), Electrodeposited Alloys and Multilayered Structuresp, Springer, Heidelberg, 2016, pp.233-291.
DOI: 10.1007/978-3-319-26073-0_7
Google Scholar
[22]
S.L. Kuo, Y.C. Chen, M.D. Ger, W. H. Hwu, Nano-Particles Dispersion Effect on Ni/Al2O3 Composite Coatings,J.Materials Chemistry and Physics. 86, 1 (2004) 5-10.
DOI: 10.1016/j.matchemphys.2003.11.040
Google Scholar
[23]
S.A. Lajevardi, T. Shahrabi, J.A. Szpunarc, Tribological Properties of Functionally Graded Ni-Al2O3 Nanocomposite Coating, J. The Electrochemical Society. 164, 6 (2017) 275 – 281.
DOI: 10.1149/2.0731706jes
Google Scholar
[24]
K.V. Murzenko, Y.D. Kudryavtsev, V.I. Balakai, Properties of composite nickel-cobalt-aluminum oxide coating deposited from chloride electrolyte, Russian Journal of Applied Chemistry. 86, 8 (2013) 1235–1242.
DOI: 10.1134/s1070427213080144
Google Scholar
[25]
H. Khon, O.V. Bashkov, A.A. Bryansky, D.B. Solovev, Failure Analysis of Polymer Blinder Using Acoustic Emission Method, Materials Science Forum, Vol. 992 (2020) 1030-1035. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.992.1030.
DOI: 10.4028/www.scientific.net/msf.992.1030
Google Scholar