Structural-Mechanical Properties of Polyurethane Surface after Carbon Ion Subplantation

Article Preview

Abstract:

Ion-plasma modification of polymers has many potential applications, in particular, in the development of biomedical products. Treatment of soft polymers can easily damage the surface; low-energy plasma and subsequent investigation of the structural and mechanical properties of the surface are required. Polyurethane is a widely used block copolymer. Subplantation of carbon ions heterogeneously changes the structural and mechanical properties of the surface (relief, stiffness, thickness of the modified coating), forming a graphene-like nanolayer. Uniaxial deformation of the treated materials in some cases leads to the damage of the surface (local nanocracks, folds). Materials have increased hydrophobicity, good deformability (valid for certain treatment regimes) and can find application in design of products with improved biomedical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-375

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Stüber, L. Niederberger, F. Danneil, H. Leiste, S. Ulrich, A. Welle, M. Marin, H. Fischer, Surface topography, surface energy and wettability of magnetron-sputtered amorphous carbon (a-C) films and their relevance for platelet adhesion, Adv. Eng. Mater. 9 (2007) 1114-1122.

DOI: 10.1002/adem.200700224

Google Scholar

[2] R. Hauert, K. Thorwarth, G. Thorwarth, An overview on diamond-like carbon coatings in medical applications, Surf. Coat. Technol. 233 (2013) 119-130.

DOI: 10.1016/j.surfcoat.2013.04.015

Google Scholar

[3] D. Tsubone, T. Hasebe, A. Kamijo, A. Hotta, Fracture mechanics of diamond-like carbon (DLC) films coated on flexible polymer substrates, Surf. Coat. Technol. 201 (2007) 6423-6430.

DOI: 10.1016/j.surfcoat.2006.12.008

Google Scholar

[4] T.B., Santos, A.A. Vieira, L.O. Paula, E.D. Santos, P.A. Radi, S. Khouri, H.S. Maciel, R.S. Pessoa, L. Vieira, Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth, J. Mech. Behav. Biomed. 68 (2017) 239-246.

DOI: 10.1016/j.jmbbm.2017.02.013

Google Scholar

[5] I.A. Morozov, A.S. Mamaev, M.V. Bannikov, A.Yu. Beliaev, I.V. Osorgina. The fracture of plasma-treated polyurethane surface under fatigue loading, Coatings 8 (2018) 75-1-11.

DOI: 10.3390/coatings8020075

Google Scholar

[6] Y. Kawamoto, A. Nakao, Y. Ito, N. Wada, M. Kaibara, Endothelial cells on plasma-treated segmented-polyurethane: Adhesion strength, antithrombogenicity and cultivation in tubes, J. Mater. Sci.-Mater. M. 8 (1997) 551-557.

Google Scholar

[7] I. Dulińska-Molak, M. Lekka, K.J. Kurzydłowski, Surface properties of polyurethane composites for biomedical applications, Appl. Surf. Sci. 270 (2013) 553-560.

DOI: 10.1016/j.apsusc.2013.01.085

Google Scholar

[8] M. Marzec, J. Kucińska-Lipka, I. Kalaszczyńska, H. Janik, Development of polyurethanes for bone repair, Mat. Sci. Eng.-C. Mater. 80 (2017) 736-747.

DOI: 10.1016/j.msec.2017.07.047

Google Scholar

[9] K. Kojio, S. Kugumiya, Y. Uchiba, Y. Nishino, M. Furukawa, The microphase-separated structure of polyurethane bulk and thin films, Polym. J. 41 (2009) 118-124.

DOI: 10.1295/polymj.pj2008186

Google Scholar

[10] D.B. Klinedinst, I. Yilgör, E. Yilgör, M. Zhang, G.L. Wilkes, The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft segments, Polymer 53 (2012) 5358-5366.

DOI: 10.1016/j.polymer.2012.08.005

Google Scholar

[11] V. Chudinov, I. Kondyurina, V. Terpugov, A. Kondyurin, Weakened foreign body response to medical polyureaurethane treated by plasma immersion ion implantation, Nucl. Instrum. Meth. B. 440 (2019) 163-174.

DOI: 10.1016/j.nimb.2018.12.026

Google Scholar

[12] I.A. Morozov, A.S. Kamenetskikh, Structural-mechanical AFM study of inhomogeneous stiff nanocoating of soft polymer substrate, IOP Conf. Ser.-Mat. Sci. 699 (2019) P. 1-7.

DOI: 10.1088/1757-899x/699/1/012031

Google Scholar

[13] D. Tsubone, T. Hasebe, A. Kamijo, A. Hotta, Fracture mechanics of diamond-like carbon (DLC) films coated on flexible polymer substrates, Surf. Coat. Technol. 201 (2007) 6423-6430.

DOI: 10.1016/j.surfcoat.2006.12.008

Google Scholar

[14] I.A. Morozov, A.S. Mamaev, I.V. Osorgina, L.M. Lemkina, V.P. Korobov, A.Yu. Belyaev, S.E. Porozova, M.G. Sherban. Structural-mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N2+ implantation, Mat. Sci. Eng.-C. Mater. 62 (2016) 242-248.

DOI: 10.1016/j.msec.2016.01.062

Google Scholar

[15] T. Akkas, C. Citak, A. Sirkecioglu, F.S., Güner Which is more effective for protein adsorption: surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly(ethylene glycol): Protein adsorption on polyurethane films, Polym. Int. 62 (2013) 1202-1209.

DOI: 10.1002/pi.4408

Google Scholar

[16] J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, P.-H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices, Chem. Soc. Rev. 47 (2018) 1822-1873.

DOI: 10.1039/c6cs00915h

Google Scholar