The Effect Covering on the Change in the Properties of Hard Alloys

Article Preview

Abstract:

Currently, hard alloys are common tool materials; they are widely used in the tool manufacturing industry. Due to the presence of refractory carbides in its structure, hard-alloy tools feature a high hardness of 80 to 92 HRA (73 to 76 HRC); a high heat resistance (from 800 °С to 1,000 °С); therefore, they can be used at speeds that are several times higher than cutting speeds of high-speed steel grades. Hard alloys are used in the form of plates that are either mechanically fixed on or soldered to tool holders. The main operational parameters, that determine the hard-alloy tool operation mode, are hardness, wear resistance, and bending strength. The operational parameters of alloy are highly dependent on its structure, phase composition, lattice block sizes, and micro-stress values [1-20]. The main methods to enhance physical and mechanical properties of hard-alloy plates are improvement of manufacturing technology, including production of fine-grained alloys and microalloying, as well as applying composite coating by vacuum deposition, which allows to increase the tool resistance 1.5 to 2 times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

376-382

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li. Zhang, Yuan-Jie Wang., Yu. Xian- wang., Shu. Chen, Xiong Xiang-Jin, Crack propagation characteristic and toughness of functionally graded WC-CO cemented carbide, Int. J. Refract. Met. Hard Mater. 26 (2008) 295–300.

DOI: 10.1016/j.ijrmhm.2007.07.002

Google Scholar

[2] I.V. Chichkovskii, Raschet teplovyх poleii pri obrabotki materialov KPЭ v srede MATHCAD [Calculation of heat fields during processing of KPI materials in the MATHCAD environment], Samara: SGY. (2003) 28–35.

Google Scholar

[3] V.T. Colovcan, Some analytical consequences of experiment data on properties of WC–Co hard metals. Int J. Refract. Met. Hard Mater. 26 (2008) 301–305.

DOI: 10.1016/j.ijrmhm.2007.07.001

Google Scholar

[4] Zhixing Guo, Ji. Xiong, Mei. Yang, Cijin Jiang, WC–TiC–Ni cemented carbide with enhanced properties, J. Alloys and Compnd. 465 (2008). 157–162.

DOI: 10.1016/j.jallcom.2007.10.132

Google Scholar

[5] S.S. Kiparisov, Ia.V. Levinskii, Azotirovanie tygoplavkich metallov [Nitriding of refractory metals], – M.: Metallurgy, (1972).

Google Scholar

[6] V.S. Panov, A. M. Chyvilin, Technologia i svostva spechenich tverduch splavov i isdelii is, – М.: MISIS, (2001).

Google Scholar

[7] Yu.V. Lakhotkin, Chemical deposition of nanostructured tungsten and tungsten-alloy coatings from gas phase, Prot. Met. Phys. Chem. 44 (2008) 319–332.

DOI: 10.1134/s0033173208040024

Google Scholar

[8] Z.Zh. Berov, B.S. Karamurzov, A.Kh. Tlibekov, M.M. Yakhutlov, Selection of a coating material for diamond grits and optimization of its thickness, J. Superhard Mater. 5 (1998) 55–61.

Google Scholar

[9] I. Endler., A. Leonhard, H.J. Scheibe, R Born, Interlayers for diamond deposition on tool materials. Diamond Relat. Mater. 5 (1996) 299–303.

DOI: 10.1016/0925-9635(95)00352-5

Google Scholar

[10] L.J. De Oliveira, S.C. Cabral, M Filgueira, Study hot pressed Fe-diamond composites graphitization, Int. J. Refract. Met. Hard Mater. 35 (2012) 228–234.

DOI: 10.1016/j.ijrmhm.2012.03.015

Google Scholar

[11] J. Hell, M. Chirtoc, C. Eisenmenger-Sittner, H. Hutter, N. Kornfeind, P. Kijamnajsuk, M. Kitzmantel, E. Neubauer, K. Zellhofe, Characterisation of sputter deposited niobium and boron interlayer in the copper–diamond system, Surf. Coat. Technol. 208 (2012) 24–31.

DOI: 10.1016/j.surfcoat.2012.07.068

Google Scholar

[12] W.Q. Qiu, Z.W. Liu, L.X. He, D.C. Zeng, Y.-W. Mai, Improved interfacial adhesion between diamond film and copper substrate using a Cu (Cr)–diamond composite interlayer, Mater. Lett. 81 (2012) 155–157.

DOI: 10.1016/j.matlet.2012.05.015

Google Scholar

[13] Zh. Ma, J. Wang, Q. Wu, Ch. Wang, Preparation of flat adherent diamond films on thin copper substrates using a nickel interlayer, Surf. Coat. Technol. 155 (2002) 96–101.

DOI: 10.1016/s0257-8972(02)00038-5

Google Scholar

[14] Y. Huang, H. Xiao, Zh. Ma, J. Wang, Gao. Pengzhao, Effects of Cu and Cu. Ti interlayer on adhesion of diamond film, Surf. Coat. Technol. 202 (2007) 180–184.

DOI: 10.1016/j.surfcoat.2007.05.014

Google Scholar

[15] Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng. A. 483 (2008) 148–152.

DOI: 10.1016/j.msea.2006.10.184

Google Scholar

[16] А.A. Zaitsev, V.V. Kurbatkina, E.A. Levashov, Features of the effect of nanodispersed additives on the sintering process and properties of powdered cobalt alloys, Russ. J. Non-Ferr. Met. 49 (2008) 120–126.

DOI: 10.3103/s1067821208020107

Google Scholar

[17] А.A. Zaitsev, V.V. Kurbatkina, E.A. Levashov, Features of the influence of nanodispersed additions on the process of and properties of the Fe–Co–Cu–Sn sintered alloy, Russ. J. Non-Ferr. Met. 49 (2008) 414–419.

DOI: 10.3103/s1067821208050180

Google Scholar

[18] E.A. Levashov, V.V. Kurbatkina, A.A. Zaytsev, Improved mechanical and tribological properties of metal-matrix composites dispersion-strengthened by nanoparticles, Materials. 3 (2010) 97–109.

DOI: 10.3390/ma3010097

Google Scholar

[19] A.A. Zaitsev, D.A. Sidorenko, E.A. Levashov, V.V. Kurbatkina, V.A. Andreev, S.I. Rupasov, P.V. Sevast'yanov, Diamond tolls in metal bonds dispersion-strengthened with nanosized particles for cutting highly reinforced concrete, J. Superhard Mater. 34 (2010) 423–431.

DOI: 10.3103/s1063457610060080

Google Scholar

[20] S.I. Bohodukhiv, Materialovedenie: uchebnik. М.: Machinostroenie, (2015).

Google Scholar