Investigation of the Rate of Vacuum-Conductive Drying of Wood-Particle Panels Based on Polyvinyl Alcohol

Article Preview

Abstract:

Wood composites are promising construction and finishing materials that offer the best properties of both wood and polymers. With the industry's need to use low-toxic adhesives in view, one of the ways to ensure the environmental friendliness of composites is the use of polyvinyl alcohol as a binder. In this respect, in order to streamline production, both in terms of reducing energy consumption and improving the quality of the final product, it is vital to choose the drying rate when pressing panels. The paper presents the results of a study of the process of vacuum-conductive drying of eco-friendly polyvinyl alcohol (PVA)-based wood-particle material. It was found that the composite samples with a PVA content of 40% in terms of physical and mechanical parameters (ultimate bending strength and ultimate tensile strength perpendicular to the panel face) fully comply with the established standards. The study provided the values of drying rate depending on 5 factors. The multi-factor regression analysis method was used to derive equations that determine the drying rate of polyvinyl alcohol-based wood-particle panels for two humidity intervals (above and below the cell walls humidification limit), taking into account the properties of different classes of bodies that make up the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

466-472

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Chiellini, P. Cinelli, Vl. Ilieva, M. Martera, Biodegradable thermoplastic composites based on polyvinyl alcohol an algae, Biomacromolecules. 9 (2008) 1007-1013.

DOI: 10.1021/bm701041e

Google Scholar

[2] Mosab Kaseem, Kotiba Hamad, Fawaz Deri and Young Gun Ko, Effect of wood fibers on the rheological and mechanical properties of polystyrene/wood composites, Journal of wood chemistry and technology. 37:4 (2017) 251-260.

DOI: 10.1080/02773813.2016.1272127

Google Scholar

[3] N.R. Galyavetdinov, R.R. Safin, A.E. Voronin, Analysis of physico-mechanical properties of composites based on polylactide and thermally modified wood fibers, Materials Science Forum. 870 (2016) 202-206.

DOI: 10.4028/www.scientific.net/msf.870.202

Google Scholar

[4] P. Bliem, S. Frömel-Frybort, Hendrikus W. van Herwijnen, S. Pinkl, T. Krenke, R. Mauritz and J. Konnerth, Engineering of material properties by adhesive selection at the example of a novel structural wood material, The Journal of Adhesion. 96:1-4 (2020) 144-164.

DOI: 10.1080/00218464.2019.1664301

Google Scholar

[5] N.R. Galyavetdinov, R.R. Khasanshin , R.R. Safin, R.G. Safin, E.Y. Razumov, The usage of wood wastes in the manufacture of composite materialsInternational Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 1:4 (2015) 779-786.

DOI: 10.5593/sgem2015/b41/s18.101

Google Scholar

[6] A. Corti, P. Cinelli, S. D'Antone, E.-R. Kenawy, R. Solaro, Biodegradation of polyvinyl alcohol in soil environment: Influence of natural organic fillers and structural parameters, Macromol. Chem. and Phys. 203 (2002) 1526-1531.

DOI: 10.1002/1521-3935(200207)203:10/11<1526::aid-macp1526>3.0.co;2-r

Google Scholar

[7] Md. Saiful Islam, Sinin Hamdan, Mansor B. Ahmad, Mahbub Hasan, Azman Hassan, M. K. Mohamad Haafiz, M. Jawaid, Effect of PVA-co-MMA copolymer on the physical, mechanical, and thermal properties of tropical wood materials, Advances in Materials Science and Engineering. (2014) 1-8.

DOI: 10.1155/2014/626850

Google Scholar

[8] N.R. Galyavetdinov, R.R. Safin, A.E. Voronin, Analysis of physico-mechanical properties of composites based on polylactide and thermally modified wood fibers, Materials Science Forum. 870 (2016) 202-206.

DOI: 10.4028/www.scientific.net/msf.870.202

Google Scholar

[9] Iswanto Apri Heri, Yusuf Sudo Hadi, Fauzi Febrianto Surdiding Ruhendi, The effect of pressing temperature and time on the quality of particle board made from Jatropha fruit nulls treated in acidic condition, Makara Journal of Technology. 17:3 (2013) 145-151.

DOI: 10.7454/mst.v17i3.2930

Google Scholar

[10] R. Rémond, G. Almeida, Mass diffusivity of low-density fibreboard determined under steady- and unsteady-state conditions: Evidence of dual-scale mechanisms in the diffusion, Wood Material Science and Engineering. 6 (2011) 23-33.

DOI: 10.1080/17480272.2010.515035

Google Scholar

[11] Bünyamin Sarı, Gökay Nemli, Nadir Ayrilmis, Mehmet Baharoğlu, Selahattin Bardak, The influences of drying temperature of wood particles on the quality properties of particleboard composite, Drying Technology. 31:1 (2013) 17-23.

DOI: 10.1080/07373937.2012.711791

Google Scholar

[12] R.R. Safin, R.R. Khasanshin, S.R. Mukhametzyanov, Influence of technical parameters of disk-shaped reactor on productivity of heat treatment of crushed wood, IOP Conference Series: Materials Science and Engineering. 327:4 (2018) 042-095.

DOI: 10.1088/1757-899x/327/4/042095

Google Scholar

[13] J. Berghel, The gas-to-particle heat transfer and hydrodynamics in spouted bed drying of sawdust, Drying Technology. 23:5 (2005) 1027-1041.

DOI: 10.1081/drt-200059134

Google Scholar

[14] M.L. Fishman, D.R. Coffin, C.I. Onwulata, J.L. Willett, Two stage extrusion of plasticized pectin/poly(vinyl alcohol) blends, Carbohydrate Polymers. 65 (2006) 421-429.

DOI: 10.1016/j.carbpol.2006.01.032

Google Scholar

[15] Rokiah Hashim, Norafizah Said, Junidah Lamaming, Mohana Baskaran, Influence of press temperature on the properties of binderless particleboard made from oil palm trunk, Materials and Design. 32 (2011) 2520-2525.

DOI: 10.1016/j.matdes.2011.01.053

Google Scholar

[16] R.R. Safin, F.V. Nazipova, R.R. Khasanshin, Pre-treatment of vegetable waste in the production of composite materials, Key Engineering Materials. 743 (2017) 53-57.

DOI: 10.4028/www.scientific.net/kem.743.53

Google Scholar

[17] Bünyamin Sarı, Gökay Nemli, Nadir Ayrilmis, Mehmet Baharoğlu, Selahattin Bardak, The influences of drying temperature of wood particles on the quality properties of particleboard composite, Drying Technology. 31:1 (2013) 17-23.

DOI: 10.1080/07373937.2012.711791

Google Scholar

[18] W. L. Plagemann, E. W. Price,W. E. Johns The Response of hardwood flakes and flakeboard to high temperature drying, The Journal of Adhesion. 16:4 (1984) 311-338.

DOI: 10.1080/00218468408074926

Google Scholar

[19] P. Bengtsson, Experimental analysis of low-temperature bed drying of wooden biomass particles, Drying Technology. 26:5 (2008) 602-610.

DOI: 10.1080/07373930801946726

Google Scholar

[20] R. Moreno, R. Rios, H. Calbucura, Batch vibrating fluid bed dryer for sawdust particles: experimental results, Drying Technology. 18:7 (2000) 1481-1493.

DOI: 10.1080/07373930008917789

Google Scholar

[21] R.R. Khasanshin., R.R. Safin, P.A. Kainov, A.V. Safina, I.A. Valeev, Effect of process pressure on the yield of products and the duration of the process of thermochemical processing of wood waste, International Multidisciplinary Scientific GeoConference, SGEM. (2019) 145-152.

DOI: 10.5593/sgem2019/4.1/s17.019

Google Scholar

[22] M. Deo, A. Cloutier, Y. Fortin, Modeling odeling vacuum-contact dryingof wood: the water potential, Drying Technology. 18:8 (2000) 1737-1778.

DOI: 10.1080/07373930008917809

Google Scholar

[23] N.R. Galyavetdinov, R.R. Safin, S.R. Mukhametzyanov, I.F. Khakimzyanov, P.A. Kaynov, Recycling energy in technology of vacuum drying, International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 1:4 (2015) 731-738.

DOI: 10.5593/sgem2015/b41/s18.095

Google Scholar

[24] R.R. Safin, I.F Khakimzyanov, Sh.R. Mukhametzyanov, Non-volatile facility for vacuum drying of thermolabile materials procedia engineering. 206 (2017) 1063-1068.

DOI: 10.1016/j.proeng.2017.10.595

Google Scholar

[25] E.Y. Razumov, R.R. Safin, S.Š. Barcík, M. Kvietková, K.R. Romelevich, Studies on mechanical properties of composite materials based on thermo modified timber, Drvna Industrija. 641:1 (2013) 3-8.

DOI: 10.5552/drind.2013.1206

Google Scholar

[26] R. A. Ibragimov, E. V. Korolev, T. R. Deberdeev, V. V. Leksin, D. B. Solovev, Energy Parameters of the Binder during Activation in the Vortex Layer Apparatus, Materials Science Forum, Vol. 945 (2019) 98-103. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.945.98.

DOI: 10.4028/www.scientific.net/msf.945.98

Google Scholar