[1]
R.C. Richman, C. Clanfrone, K.L. Pressnail, More sustainable masonry façade: Preheating ventilation air using a dynamic buffer zone, Journal of building physics. 34 1 (2018) 27-41.
DOI: 10.1177/1744259109355729
Google Scholar
[2]
P. Kloseiko, E. Arumagi, T. Ralamees, Hydrothermal performants of internally insulated brick wall in cold climate: a case study in a historical school building, Journal of building physics. 38 5 (2015) 444-464.
DOI: 10.1177/1744259114532609
Google Scholar
[3]
O.I. Rubtsov, E.Yu. Bobrova, A.D. Zhukov, E.A. Zinoviev, Ceramic brick, stones and full-brick walls, Building materials. 9 (2019) 8–13. DOI: https://doi.org/10.31659/0585-430X-2019-774-9-8-13.
DOI: 10.31659/0585-430x-2019-774-9-8-13
Google Scholar
[4]
N. Makoond, L. Pela, C. Molins, Dynamic elastic properties of brick masonry constituents, Construction and Building Materials. 199 (2019) 756-770.
DOI: 10.1016/j.conbuildmat.2018.12.071
Google Scholar
[5]
Y. Boffill, H. Blanco, I. Lombillo, L. Villegas, Assesment of historic brickwork under compression and comparison with available equations, Construction and Building Materials. 207 (2019) 258-272.
DOI: 10.1016/j.conbuildmat.2019.02.083
Google Scholar
[6]
M.Z. Naser, Properties and material models for common construction materials at elevated temperatures, Construction and Building Materials. 215 (2019) 192-206.
DOI: 10.1016/j.conbuildmat.2019.04.182
Google Scholar
[7]
P.M. Zhuk, A.D. Zhukov, The regulatory framework for the environmental assessment of building materials: prospects for improvement, Ecology and Industry of Russia. 4 (2018) 52–57. DOI: 10. 184 12 / 1816-0395-2018-4-52-57.
DOI: 10.18412/1816-0395-2018-4-52-57
Google Scholar
[8]
K.Pietrzyk, Thermal performance of a building envelope – a probabilistic approach, Journal of building physics. 34 1 (2010) 77-96.
DOI: 10.1177/1744259109339652
Google Scholar
[9]
Dos Santos Gerson Henrique, Mendes Nathan, Combined head, air and moisture (HAM) transfer model for porous building materials, Journal of building physics. 32 3 (2009) 203-220.
DOI: 10.1177/1744259108098340
Google Scholar
[10]
B.P. Jelle, A. Gustavsen, R. Baetens, The path to the high-performance thermal building insulation materials and solutions of tomorrow, Journal of building physics. 34 2 (2010) 99-123.
DOI: 10.1177/1744259110372782
Google Scholar
[11]
A.A. Shubbar, M. Sadique, P. Kot, W. Atherton, Future of clay-based construction materials – a review, Construction and Building Materials. 210 (2019) 172-187.
DOI: 10.1016/j.conbuildmat.2019.03.206
Google Scholar
[12]
Y. Luo, S. Zheng, S. Ma, C. Liu, X. Wang, Preparation of sintered foamed ceramics derived entirely from coal fly ash, Construction and Building Materials. 163 (2018) 529-538.
DOI: 10.1016/j.conbuildmat.2017.12.102
Google Scholar
[13]
A. Al-Faking, B.S. Mohammed, M.S. Liew, E. Nikbakht, Incorporation of waste materials in the manufacture of masonry, Journal of Building Engineering. 21 (2019) 37-54.
DOI: 10.1016/j.jobe.2018.09.023
Google Scholar
[14]
W.C. Fontes, J.M. Franco de Carvalo, R.A.F. Peixoto, L.C.R. Andrade, A.V. Segadaes, Assessment of the use potential of iron ore tailings in the manufacture of ceramic tiles: from tailings-dams to brown porcelain,, Construction and Building Materials. 206 (2019) 111-121.
DOI: 10.1016/j.conbuildmat.2019.02.052
Google Scholar
[15]
R. Li, Y. Zhou, C. Li, Z. Huang, Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity, Construction and Building Materials. 213 (2019) 43-50.
DOI: 10.1016/j.conbuildmat.2019.04.040
Google Scholar
[16]
O.R. Njindam, D. Njoya, M. Mouafon, D. Njopwoud, J.R. Mache, A. Messan, Effect of glass powder on the technological properties fnd microstructure of clay mixture for porcelain stoneware tiles manufacture, Construction and Building Materials. 170 (2018) 512-519. https://doi.org/10.1016/j.conbuildmat.2018.03.069.
DOI: 10.1016/j.conbuildmat.2018.03.069
Google Scholar
[17]
V. Karayannis, A. Domopouolou, A. Baklavaridis, A. Moutsatsou, E. Katsika, C. Drossou, Fired ceramics 100% from lignite fly ash waste glass cullet mixtures, Journal of Building Engineering. 14 (2017) 1–6.
DOI: 10.1016/j.jobe.2017.09.006
Google Scholar
[18]
N.U. Kockal, Properties and microstructure of porous ceramic bodies containing fly ash, Journal of building physics. 41 6 (2018) 533-564.
DOI: 10.1177/1744259111429781
Google Scholar
[19]
A. Zhukov, E. Shokodko, E. Bobrova, I. Bessonov, G. Dosanova, N. Ushakov, Interior Acoustic Materials and Systems, In: Murgul V., Pasetti M. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018, Advances in Intelligent Systems and Computing. 983 (2019) 740-747.
DOI: 10.1007/978-3-030-19868-8_72
Google Scholar
[20]
A. Zhukov, E. Shokodko, Mathematical Methods for Optimizing the Technologies of Building Materials, In: Popovic Z., Manakov A., Breskich V. (eds) VIII International Scientific Siberian Transport Forum, TransSiberia 2019, Advances in Intelligent Systems and Computing, 1116 (2020) 413-421. DOI: https://doi.org/10.1007/978-3-030-37919-3_40.
DOI: 10.1007/978-3-030-37919-3_40
Google Scholar