[1]
B. John, Manufacture, Characterisation and application of cellular metals and metal foams,, Prog. Mater Sci. vol.46, pp.559-632, (2001).
Google Scholar
[2]
M.A. Atwater, L.N. Guevara, K.A. Darling, et al., Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges,, Adv. Eng. Mater., vol.20, p.1700766, (2018).
DOI: 10.1002/adem.201700766
Google Scholar
[3]
J.H. Qin, Q. Chen Q, C.Y. Yang , et al., Research process on property and application of metal porous materials,, J. Alloys Compd., vol.654, pp.39-44, (2016).
Google Scholar
[4]
A. Kucharczyk, K. Naplocha, J.W. Kaczmar, et al., Current status and recent developments in porous magnesium fabrication,, Adv. Eng. Mater. vol.20, p.1700562, (2018).
DOI: 10.1002/adem.201700562
Google Scholar
[5]
E. Bele B.A. Bouwhuis,C. Codd,et al., Structural ceramic coatings in composite microtruss cellular materials,, Acta Mater. vol.59, pp.6145-6154, (2011).
DOI: 10.1016/j.actamat.2011.06.027
Google Scholar
[6]
A. Jung, A.D. Pullen, W.G. Proud, Strain-rate effects in Ni/Al composite metal foams from quasi-static to low-velocity impact behavior,, Composites Part A. vol.85, pp.1-11, (2016).
DOI: 10.1016/j.compositesa.2016.02.031
Google Scholar
[7]
T. Abdulla, A. Yerokhin, R. Goodall, Effect of Plasma Electrolytic Oxidation coating on the specific strength of open-cell aluminium foams,, Mater. Des. vol.32, pp.3742-3749, (2011).
DOI: 10.1016/j.matdes.2011.03.053
Google Scholar
[8]
X.T. Lu, H.J. Luo, Z.G. Zhang, et al., High-temperature compressive performance of Mg alloy foams coated with Ni-P layer,, Journal of Wuhan University of Technology-Mater. Sci. Ed. vol.35, pp.805-811, (2020).
DOI: 10.1007/s11595-020-2323-4
Google Scholar
[9]
J.A. Liu, S.Q. Shi, L.R. Zhang, Enhanced compressive properties of open-cell Mg-Gd-Zn foams with long-period stacking ordered phase at elevated temperatures,, Mater. Lett. vol.231, pp.154-158, (2018).
DOI: 10.1016/j.matlet.2018.07.145
Google Scholar
[10]
B.N. Yadav, D. Muchhala, P. Singh, et al., Synergic effect of MWCNTs and SiC addition on microstructure and mechanical properties of closed-cell Al-SiC-MWCNTs HCFs,, Composites Part B. vol.172, pp.458-471, (2019).
DOI: 10.1016/j.compositesb.2019.05.041
Google Scholar
[11]
J.T.W. Jappes, B. Ramamoorthy, P.K. Nair, A study on the influence of process parameters on efficiency and crystallinity of electroless Ni-P deposits,, J. Mater. Process. Technol. vol.169, pp.308-313, (2005).
DOI: 10.1016/j.jmatprotec.2005.03.010
Google Scholar
[12]
Z.M. Liu, W. Gao, The effect of substrate on the electroless nickel plating of Mg and Mg alloys,, Surf. Coat. Technol. vol.200, pp.3553-3560, (2006).
DOI: 10.1016/j.surfcoat.2004.12.001
Google Scholar
[13]
A.H. Graham, R.W. Lindsay, H.J. Read. The Structure and Mechanical Properties of Electroless Nickel,, J. Electrochem. Soc.vol.112, pp.401-413, (1965).
DOI: 10.1149/1.2423557
Google Scholar
[14]
H.C. Huang, S.T. Chung, S.J. Pan, et al., Microstructure evolution and hardening mechanisms of Ni-P electrodeposits,, Surf. Coat. Technol. vol.205, pp.2097-2103, (2010).
DOI: 10.1016/j.surfcoat.2010.08.115
Google Scholar
[15]
K.M. Yang, X.D. Yang, E.Z. Luo, et al., Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams,, Mater. Sci. Eng., A. vol.690, pp.294-302, (2017).
DOI: 10.1016/j.msea.2017.03.004
Google Scholar
[16]
J.A. Liu, Q.X. Qu, Y. Liu, et al., Compressive properties of Al-Si-SiC composite foams at elevated temperatures,, J. Alloy. Compd. vol.676, pp.239-244, (2016).
DOI: 10.1016/j.jallcom.2016.03.076
Google Scholar